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Coarse-Grained Models of Polymers

The “real” world

Each site or bead = 
                 many chemical repeat units
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The theorist’s world

Study via 
combinatorics

Lattice Self Avoiding Walk

Study via methods 
of liquid-state 

physics

Continuum “pearl neaklace”



SW Chain Model

Model has a discrete energy spectrum:  En = nε 
(n = number of monomer-monomer interactions)
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Polymer:

built from simple 
monomers:

Model Parameters: 
  ε = well depth (sets energy scale) 
  σ = hard-sphere diameter 
  L = fixed bond length (L = σ) 
  λ = interaction range/σ   
  T* = kBT/ε = reduced temperature 

Can study this model for a continuous range of λ
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Density of States and Wang-Landau Sampling I

   Starting w/ g(En)=1, H(En)=0 ∀ n, ƒ0 =e 

Generate sequence of chain conformations 
using acceptance criteria: 

Update DOS:        g(En) → ƒm g(En) 

Update visitation 
histogram:             H(En) → H(En)+1 

When histogram ~flat ... 
   reduce modification factor:  ƒm+1 = (ƒm )1/2 
   reset histogram to zero:      H(En) = 0 ∀ n
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Pacc (a→ b) = min 1, g(Ea )
g(Eb )

 

 
 

 

 
 

iterate 
 m levels 

m=20 is 
standard 

we need 
m>25

Density of States: 

     g(En) = volume of configurational 
     phase space for energy state En 

Thermodynamics: 

microcanonical entropy: 
   S(E) = kB lng(E) 

canonical partition function: 
    Z(T) = ∑ g(E)exp(-E/kBT) 

*Wang & Landau, PRL 86, 2050 (2001); PRE 64, 056101 (2001).

Wang-Landau algorithm* ... an iterative 
 simulation method to compute  g(En): 



Wang-Landau Sampling II

Success of the WL methods depends critically on underlying MC move set
These "standard" moves easily sample most of configuration space:

ReptationSingle bead crankshaft Pivot

Escobedo & de Pablo, JCP 102, 2636 (1995)

End-bridging
... However, we need this move to access the lowest energy regions of phase space:

This move requires 
weight factors in the 
acceptance criteria: 

wb = naJb

a b
# of bridgable 
sites in state a

Jacobian factor 
for state b



Single Chain DOS and Canonical Analysis I

Canonical Analysis 

Partition Function: Z = ∑ g(E) e–E/kT  

Probability:  P(E,T) = g(E) e–E/kT / Z 

Average Energy:  〈E(T)〉 = ∑EP(E,T) 

Specific Heat:  C(T) = d〈E(T)〉/dT 
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Taylor, Paul, & Binder, PRE 79, 050801(R) (2009)

For N≥128 sampling done in overlapping energy windows 
For N = 256: g(E) spans ~700 orders of magnitude! 

Algorithm validated via comparison with 
 exact DOS results for short (n≤6) SW chains.



Canonical Analysis II
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In the "canonical analysis", collapse and freezing 
specific heat peaks merge for small λ ... 

... a "microcanonical analysis" can be 
used to distinguish these transitions 



Microcanonical Analysis I

Phase transitions in a finite system 
determined from curvature of 

the microcaonical entropy: 
 S(E) = kB ln g(E)

Gross, "Microcanonical Thermodynamics" (2001) 
Behringer, Pleimling, & Huller, JPA 38, 973 (2005) 

Junghans, Bachmann, & Janke, PRL 97, 218103 (2006) 
Taylor, Paul, & Binder, PRE 79, 050801(R) (2009) 
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Microcanonical Analysis II

Collapse transition is preempted 
by freezing for short-range interaction!
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Energy states for the SW chain: 0, -ε, -2ε, ..., -nmaxε

SW chain partition function is a polynomial in y=exp(1/T*): 

Z(T) = ∑ g(E) e–E/kT  = ∑n gn yn 

or 

Z(T) = Π (y-yk)  

 where yk = ak + ibk are the complex roots of Z(T) 

Properties: real roots must be negative 
                    complex roots come in pairs a ± ib 
                     sum of Re(yk) is negative, i.e.,  ∑kak < 0 

Partition Function Zeros 

€ 

C(y)
kB

= β 2
∂ 2 lnZ
∂β 2

= (ln y)2 −yyk
(y − yk )

2
k= 0

kmax

∑

All thermodynamics can be written in terms of roots {yk} 

Example: Heat Capacity  (physical temp. range: y > 1) 

Roots near real axis 
contribute most 



Thermodynamics from Partition Function Zeros I 

Exact Density of States* Partition Function Zeros 

Specific Heat 

*J. Chem Phys. 118, 883 (2003) 
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Z(T) = Πk (y-yk)Z(T) = ∑n gn yn 

Technical note: 
   since gn~10-n 

can compute roots of 
   Z(T) = ∑n (10ngn) (y/10)n 



Thermodynamics from Partition Function Zeros II 

Partition Function Zeros 

Specific Heat 

Z(T) = Πk (y-yk)



Phase Behavior from Partition Function Zeros I 

With increasing N "root maps" develop distinctive structure: 
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447 roots 956 roots 

 For the SW chain: root maps show distinctive signatures for transitions ... 
       collapse = elliptical horseshoe ring 

       freezing = circle of roots 
With increasing N, leading roots approach the real axis 

Phase Behavior from Partition Function Zeros II

low T high T 

*Yang & Lee, Phys. Rev. 87, 
404, 410 (1952). 

Follows Yang-Lee behavior*: 
   In the thermodynamic limit roots yn intersect real y-axis ... 
               gives rise to divergence of thermodynamic properties 



 Transition temperatures for finite chains can be obtained by: 
fitting ellipse and circle to  root maps 

Using Partition Function Roots Maps I

 With increasing N, root 
density on rings increase 

... scaling of the root density can be 
used to determine transition strength. 
Janke & Kenna, J. Stat. Phys. 102, 

1211 (2001) 



 Roots maps clearly show 
 disappearance of chain collapse 

 for short range interactions   

Using Partition Function Roots Maps II
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 Collapse transitions often have 
 very weak C(T) or c(E) peaks   

Using Partition Function Roots Maps III

Root maps can precisely locate 
these weak transitions   



Origin of the circle: 

Number of roots forming circle equals number of 
 energy states in "coexistence" region of S(E) 

This portion of the Z(T) polynomial can be 
 approx. mapped onto a polynomial of the form: 

Z = 1 +c1y +c2y2 + ... + cn-1yn-1 + yn 
where ci < 1 and ci = cn-i 

Yang and Lee have shown that any polynomial of 
 this form has roots confined to the unit circle* 

Properties of the Partition Function Zeros

cn=gnexp(n/Tf-b) 
Z(T) = eb∑n cn (y/yf)n 

*Lee & Yang, Phys. Rev. 87, 
410 (1952). 



Z(T) = ∑ g(E) e–E/kT  = ∑ gn yn   where y=exp(1/T*) 

Transitions divide the complex y-plane into circular regions 

Z(T) can be divided into "sub-polynomials" 
 that span the energy range for each phase: 

Z(y) = Zcoil + Zglobule + Zcoex + Zcrystal 

Properties of the Partition Function Zeros



Summary and Outlook

Funding: DFG (SFB 625-A3)   
     NSF (DMR-0804370) 
     Hiram College          

Special thanks to the Binder and Paul groups for their hospitality! 

                             Flexible SW Chain Model  

Findings:  Partition function zeros provide clear signatures 
                                  for chain freezing and collapse transitions. 
                  Chain collapse located more robustly than from C(T) or c(E). 

To do:       Study more fully relation between curvature properties 
                           of S(E) and distribution of zeros in the complex plane.       
                  Carry out finite size scaling analysis with these roots. 

Happy "American" Thanksgiving 


