CompPhys11: New Developments in Computational Physics, Leipzig, Nov. 24-25, 2011

Partition function zeros and phase transitions of a homopolymer chain

Mark P. Taylor¹, Pyie Phyo Aung¹, Wolfgang Paul³, and Kurt Binder²

The National Atlas of the United States of America®

Coarse-Grained Models of Polymers

SW Chain Model

Model Parameters:

- ϵ = well depth (sets energy scale)
- σ = hard-sphere diameter
- L = fixed bond length (L = σ)
- λ = interaction range/ σ
- $T^* = k_B T / \epsilon$ = reduced temperature

Can study this model for a continuous range of λ

Model has a discrete energy spectrum: $E_n = n\epsilon$ (n = number of monomer-monomer interactions)

Density of States and Wang-Landau Sampling I

Density of States: g(E_n) = volume of configurational phase space for energy state E_n

Thermodynamics:

microcanonical entropy: $S(E) = k_B lng(E)$

canonical partition function:

 $Z(T) = \sum g(E)exp(-E/k_BT)$

iterate m levels m=20 is standard we need m>25 Wang-Landau algorithm* ... an iterative simulation method to compute g(E_n):

Starting w/ $g(E_n)=1$, $H(E_n)=0 \forall n, f_0 = e$

 Generate sequence of chain conformations using acceptance criteria:

$$P_{acc}(a \rightarrow b) = \min\left(1, \frac{g(E_a)}{g(E_b)}\right)$$

Update DOS: $g(E_n) \rightarrow f_m g(E_n)$ Update visitation
histogram: $H(E_n) \rightarrow H(E_n)+1$ When histogram ~flat ...
reduce modification factor: $f_{m+1} = (f_m)^{1/2}$
reset histogram to zero: $H(E_n) = 0 \forall n$

*Wang & Landau, PRL <u>86</u>, 2050 (2001); PRE <u>64</u>, 056101 (2001).

Wang-Landau Sampling II

Success of the WL methods depends critically on underlying MC move set

These "standard" moves easily sample most of configuration space:

... However, we need this move to access the lowest energy regions of phase space:

Single Chain DOS and Canonical Analysis I

Canonical Analysis II

In the "canonical analysis", collapse and freezing specific heat peaks merge for small λ ...

... a "microcanonical analysis" can be used to distinguish these transitions

Microcanonical Analysis I

Ε/ε

Behringer, Pleimling, & Huller, JPA **38**, 973 (2005) Junghans, Bachmann, & Janke, PRL **97**, 218103 (2006) Taylor, Paul, & Binder, PRE **79**, 050801(R) (2009)

Microcanonical Analysis II

Single Chain Phase Diagram: T-λ Version

Taylor, Paul, & Binder, J. Chem. Phys. 131, 114907 (2009)

Partition Function Zeros

Energy states for the SW chain: 0, $-\epsilon$, -2ϵ , ..., $-n_{max}\epsilon$ SW chain partition function is a polynomial in y=exp(1/T*): $Z(T) = \sum g(E) e^{-E/kT} = \sum_n g_n y^n$ or

 $Z(T) = \prod (y-y_k)$

where $y_k = a_k + ib_k$ are the complex roots of Z(T)

Properties: real roots must be negative complex roots come in pairs $a \pm ib$ sum of Re(y_k) is negative, i.e., $\sum_{k} a_{k} < 0$

All thermodynamics can be written in terms of roots $\{y_k\}$

Example: Heat Capacity (physical temp. range: y > 1)

 $\frac{C(y)}{k_B} = \beta^2 \frac{\partial^2 \ln Z}{\partial \beta^2} = (\ln y)^2 \sum_{k=0}^{k_{\text{max}}} \frac{-yy_k}{(v - v_k)^2}$ Roots near real axis contribute most

Thermodynamics from Partition Function Zeros I

Thermodynamics from Partition Function Zeros II

Partition Function Zeros

Phase Behavior from Partition Function Zeros I

With increasing N "root maps" develop distinctive structure:

Phase Behavior from Partition Function Zeros II

For the SW chain: root maps show distinctive signatures for transitions ...

collapse = elliptical horseshoe ring

freezing = circle of roots

With increasing N, leading roots approach the real axis

Using Partition Function Roots Maps I

Transition temperatures for finite chains can be obtained by: fitting ellipse and circle to root maps 20 16 N = 64N = 12815-12 λ=1.10 λ=1.10 10-8collapse °collapse 5 4 lm(y) lm(y) 0 0 -5 freezing -4 freezing -10--8 -15--12-200 roots 447 roots ° -20 -16-15 20 -20 -15 -10 10 -16 -12 -8 12 16 -5 0 5 Ó -4 4 8 Re(y) 12 Re(y) N = 256[°]λ=1.10 8 With increasing N, root density on rings increase 4 collapse lm(y) ... scaling of the root density can be used to determine transition strength. freezing -4 Janke & Kenna, J. Stat. Phys. 102, 1211 (2001) -8 956 roots -12 -12 12 8 -8 -4 0 4 Re(y)

Using Partition Function Roots Maps II

Using Partition Function Roots Maps III

Properties of the Partition Function Zeros

Origin of the circle:

Number of roots forming circle equals number of energy states in "coexistence" region of S(E)

This portion of the Z(T) polynomial can be approx. mapped onto a polynomial of the form: $Z = 1 + c_1y + c_2y^2 + \dots + c_{n-1}y^{n-1} + y^n$ where c_i < 1 and c_i = c_{n-i}

Yang and Lee have shown that any polynomial of this form has roots confined to the unit circle*

-200 double tangent line: n[g(E)/g(0)] $-n/T_{\ell} + b$ -400 N = 128 λ=1.10 -600 $-n = E_n / \epsilon$ -800 1.0 N=128 coex. region $\lambda = 1.10$ 0.8 С transformed coefficients n "Lee-Yang" using: T_=0.515, b=98.95 0.6 coefs. $c_n = g_n exp(n/T_f - b)$ $Z(T) = e^b \sum_n c_n (y/y_f)^n$ 0.4-0.2 *Lee & Yang, Phys. Rev. 87, 0.0 -400 -300 -200 -100 0 -n (=E /ε)

Properties of the Partition Function Zeros

 $Z(T) = \sum g(E) e^{-E/kT} = \sum g_n y^n$ where $y = exp(1/T^*)$

Transitions divide the complex y-plane into circular regions

Z(T) can be divided into "sub-polynomials" that span the energy range for each phase:

 $Z(y) = Z_{coil} + Z_{globule} + Z_{coex} + Z_{crystal}$

Flexible SW Chain Model

Findings: Partition function zeros provide clear signatures for chain freezing and collapse transitions. Chain collapse located more robustly than from C(T) or c(E).

 To do: Study more fully relation between curvature properties of S(E) and distribution of zeros in the complex plane. Carry out finite size scaling analysis with these roots.

> Funding: DFG (SFB 625-A3) NSF (DMR-0804370) Hiram College

Special thanks to the Binder and Paul groups for their hospitality!

Happy "American" Thanksgiving