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(2G @) is conventionally derived using the plaquette P from the
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Motivation |

@ 1978: Shifman, Vainshtein and Zakharov introduced the
non-perturbative gluon condensate (2 G G)

@ Lattice gauge theory provides a promising tool to calculate it from
Wilson loops.

@ In the early 80th first computations : Plaquette(1981 Banks et al.,
DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz
et al., ligenfritz et al.)

(2G @) is conventionally derived using the plaquette P from the
relation

2 _b 2
_ _ 4T 09| &
Pumc = Ppert — @ 36 [ 5(9) } <7TGG>

— Ppert is needed to very high order in LPT!
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Motivation I

@ General interest in the behavior of perturbative series in QCD:

n*
Q) ~ 3 an\”
n

@ Series are asymptotic, and assumed that for large n the leading
growth of the coefficients a, can be parametrized

an~ C1(C2)"T'(n+ GCs)

@ Needed: perturbative techniques which reach orders (n*)of the
perturbative series where a possible set-in of this assumed
behavior can be tested.
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Motivation Il

@ Standard diagrammatic approach in LPT is restricted essentially
to two-loop

@ Di Renzo et al. formulated the so-called Numerical Stochastic
Perturbation Theory (NSPT)

@ Based on the Langevin quantization method of Parisi/Wu

@ NSPT drops the concept of Feynman diagrams - uses the action
with the corresponding perturbative expansion of fields

@ Talk of A. Schiller at CompPhys07 about NSPT

@ Talk of H. Perlt at CompPhys09 about first results on
NSPT+Wilson loops
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Computational realization

@ Pure SU(3) gauge theory
@ Lattice sizes L* with L = 4,6, 8,12
@ Loop order n =20

@ Computer ressources: ITP, Computer center of Leipzig university,
RCNP Osaka
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Wilson loops

Wilson loops on the lattice are ordered products of gauge link
operators U,(x) = exp (ag T¢ AS(x))
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Wilson loops in NSPT

Connection to condensate (a = 1)

Wiy = U.(x)...U.(x+(N—=1p)U,(x+Np)...U,(x +Nu+(M-1)v)
Ul(x+(N=1)u+Mv).. . U(x+Mv) Ul (x + (M —1)v)... Ul(x)

(plaquette: P = Wiy = U, (X)U, (x + p) U, (x + v)Uf(x))

Shifman (1980):

7T2 Qg ) . .
(1 — Whm) ~ 12N, <? GG) Sy + higher dim. terms
Snim: area of Wilson loop (here: N x M)
GG=G;, G,
G, = 0,AC —0,AC — g fcabAzAfZ
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Wilson loops in NSPT

We write the perturbative expansion for a Wilson loop Wy as

Wam(g, n Z
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Wilson loops in NSPT

We write the perturbative expansion for a Wilson loop Wy as

Wam(g, n Z Wi g*"

As an example for W41 and a lattice of L = 12:

Ws1(g,20) = 1 —0.33333392 — 0.033911g* — 0.0137061g® — 0.007251089°8 —
0.004410019'"° — 0.00292153g'? — 0.0020518g'* — 0.00150358g'¢ —
0.00113812g'® — 0.0008837292° — 0.00070039692%> — 0.0005646299* —
0.00046183792¢ — 0.00038256892% — 0.0003204649°° — 0.0002711089%% —
0.0002313769* — 0.000198948g°% — 0.000172211g3® — 0.000149902g*°

( g: bare lattice coupling)
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Boosted series

Expansion parameter g for the perturbative computation of Wilson
loops is not really small (g2, < g% < 92..,):

92,4 ~ 1.04: convergence radius for our finite lattice series
g2, ~ 0.95: confinement region
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Boosted series

Expansion parameter g for the perturbative computation of Wilson
loops is not really small (g2, < g% < 92..,):

92,4 ~ 1.04: convergence radius for our finite lattice series

92, ~ 0.95: confinement region

Expansion in bare lattice coupling g is disadvantegeous because of
lattice artefacts — boosted coupling g2 = g2/ Wi1(g, n*)

Wh,11(gb,20) =

1 —0.333333¢g2 + 0.0772001g} — 0.0168321g§ + 0.00306193¢8 —
0.0006186869,°+0.0000871841g}2—0.0000242642g;*+8.309057 10~ g6 —
1.7372532 10759/ — 2.89077030 10" g2° — 2.31637202 10" g22 —
2.05976723 107 g2* + 5.002386978 10~8g2® — 1.02263213 10~/ g8 +
4.32838185 10 8g20 — 3.40958978 108932 — 1.4169258010°g3* +
8.62333 108936 — 2.9140127 10" ¢3® + 6.30326326 107 g°
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Coefficient comparison

20

Comparison of coefficients for naive and boosted perturbative series
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Wilson loops in NSPT

Choice of coupli

ng

92 > 9° (g2 = 1 — g2 = 1.683): need the best possible perturbative
determination — g2 = g2/ Wp 11(gp, 1)

Test: for large 5 = 6/g° the (MC) measured Wilson loop should be

almost perturbative
Define AWnu(8) =

Wi, p1(8)—Wim,mc (8)

AWy

Wm,mc (8)

0.1

0.01 | &a

0.001

0.0001 ¢

le-05
-

L g2 = 92/ Wi1(g,13); red: g2 = g%/ Wh.11(9b, 13)
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Relative convergence

Compare relative convergence behaviour from

_ [ Wam(g; n*) — Wi, |

*
5NM(gv n ) W,
NM 00
forL=12and g = 6.
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Ratios of Wilson loops

We consider the ratios

km o (Wmb(9b)) (n) ~2n
RNM,N’M’ - (Wy iy b gb) Z[ NMNM] 9
together with the "naturalness condition"
k x Area[Wny] = m x Area[W,, ]
The coefficients show a similar behaviour as the boosted coefficients

1

0.001 £

[R‘:3 11] »\f 0.0001
1,2 05 |
[R12 11] -
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Ratios of Wilson loops

We consider
- Apr  Apr p Ay
= = —
Auvc  Apr+ A4 Apt
Taking for A the ratios introduced above

= k m
Rl vy = (Wanoor(m)/ W ao) | (Wagar p7(1")/ Way i)
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Ratios of Wilson loops

We have the exact relation
d Hk,m
AWy, = ( &XP | — 5 109 (RNMN/M/) — 1) X Whmppr

Using the Necco-Sommer relation 5 « (a/ry) we get
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almost ideal ~ a* scaling behaviour
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Condensate from Aw,,w, )

AWﬂ(WN,M,) ~ a — determination of (GG) as dimension=4 quantity
(n* = 13 as summation limit for boosted PT-series, rp = 0.5 fm)

Compare to (2 GG)gyz ~ 0.012GeV*

0.054(2)(3) GeV*
0.051(2)(2) GeV*
0.046(3)(1) GeV*
0.059(1)(5) GeV*
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Summary

@ PT series coefficients do not show any factorial behaviour up to
n = 20 (not shown)
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Summary

@ PT series coefficients do not show any factorial behaviour up to
n = 20 (not shown)

@ Finite lattice PT series can be represented (and parametrized)
very well by a hypergeometric model (not shown)

@ Boosted PT series are shown to be very useful
@ Non perturbative parts scale like ~ a*
@ (% GG) obtained are larger than SVZ value
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