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Introduction

Motivation I

1978: Shifman, Vainshtein and Zakharov introduced the
non-perturbative gluon condensate 〈απG G〉
Lattice gauge theory provides a promising tool to calculate it from
Wilson loops.
In the early 80th first computations : Plaquette(1981 Banks et al.,
DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz
et al., Ilgenfritz et al.)

〈απG G〉 is conventionally derived using the plaquette P from the
relation

PMC = Ppert − a4 π
2

36

[−b0 g2

β(g)

]
〈α
π

GG〉

→ Ppert is needed to very high order in LPT!
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Introduction

Motivation II

General interest in the behavior of perturbative series in QCD:

Q(n?) ∼
n?∑
n

anλ
n

Series are asymptotic, and assumed that for large n the leading
growth of the coefficients an can be parametrized

an ∼ C1 (C2)n Γ(n + C3)

Needed: perturbative techniques which reach orders (n?)of the
perturbative series where a possible set-in of this assumed
behavior can be tested.
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Introduction

Motivation II

General interest in the behavior of perturbative series in QCD:

Q(n?) ∼
n?∑
n

anλ
n

Series are asymptotic, and assumed that for large n the leading
growth of the coefficients an can be parametrized

an ∼ C1 (C2)n Γ(n + C3)

Needed: perturbative techniques which reach orders (n?)of the
perturbative series where a possible set-in of this assumed
behavior can be tested.

Talk H. Perlt (Leipzig) The non-perturbative part of Wilson loops CompPhys11 4 / 19



Introduction

Motivation II

General interest in the behavior of perturbative series in QCD:

Q(n?) ∼
n?∑
n

anλ
n

Series are asymptotic, and assumed that for large n the leading
growth of the coefficients an can be parametrized

an ∼ C1 (C2)n Γ(n + C3)

Needed: perturbative techniques which reach orders (n?)of the
perturbative series where a possible set-in of this assumed
behavior can be tested.

Talk H. Perlt (Leipzig) The non-perturbative part of Wilson loops CompPhys11 4 / 19



Introduction

Motivation III

Standard diagrammatic approach in LPT is restricted essentially
to two-loop
Di Renzo et al. formulated the so-called Numerical Stochastic
Perturbation Theory (NSPT)
Based on the Langevin quantization method of Parisi/Wu
NSPT drops the concept of Feynman diagrams - uses the action
with the corresponding perturbative expansion of fields
Talk of A. Schiller at CompPhys07 about NSPT
Talk of H. Perlt at CompPhys09 about first results on
NSPT+Wilson loops
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Introduction

Computational realization

Pure SU(3) gauge theory
Lattice sizes L4 with L = 4,6,8,12
Loop order n = 20
Computer ressources: ITP, Computer center of Leipzig university,
RCNP Osaka
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Wilson loops in NSPT

Wilson loops

Wilson loops on the lattice are ordered products of gauge link
operators Uµ(x) = exp

(
a g T c Ac

µ(x)
)

x
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Wilson loops in NSPT

Wilson loops in NSPT

Connection to condensate (a = 1)

WNM = Uµ(x) . . .Uµ(x + (N − 1)µ) Uν(x + Nµ) . . .Uν(x + Nµ+ (M − 1)ν)

U†µ(x + (N − 1)µ+ Mν) . . .U†µ(x + Mν) U†ν(x + (M − 1)ν) . . .U†ν(x)

(plaquette: P = W11 = Uµ(x)Uν(x + µ)U†µ(x + ν)U†ν(x))

Shifman (1980):

〈1−WNM〉 ∼ π2

12Nc
〈αs

π
GG〉S2

NM + higher dim. terms

SNM : area of Wilson loop (here: N ×M)
GG ≡ Gc

µνGc
µν

Gc
µν = ∂µAc

ν − ∂νAc
µ − g f cabAa

µAb
ν
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Wilson loops in NSPT

Wilson loops in NSPT

We write the perturbative expansion for a Wilson loop WNM as

WNM(g,n?) =
n?∑

n=0

W (n)
NM g2n

As an example for W11 and a lattice of L = 12:

W11(g,20) = 1−0.333333g2−0.033911g4−0.0137061g6−0.00725108g8−
0.00441001g10 − 0.00292153g12 − 0.0020518g14 − 0.00150358g16 −
0.00113812g18 − 0.00088372g20 − 0.000700396g22 − 0.000564629g24 −
0.000461837g26 − 0.000382568g28 − 0.000320464g30 − 0.000271108g32 −
0.000231376g34 − 0.000198948g36 − 0.000172211g38 − 0.000149902g40

( g: bare lattice coupling)
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Wilson loops in NSPT

Boosted series

Expansion parameter g for the perturbative computation of Wilson
loops is not really small (g2

min < g2 < g2
max ):

g2
max ∼ 1.04: convergence radius for our finite lattice series

g2
min ∼ 0.95: confinement region

Expansion in bare lattice coupling g is disadvantegeous because of
lattice artefacts→ boosted coupling g2

b = g2/W11(g,n?)

Wb,11(gb,20) =
1− 0.333333g2

b + 0.0772001g4
b − 0.0168321g6

b + 0.00306193g8
b −

0.000618686g10
b +0.0000871841g12

b −0.0000242642g14
b +8.309057 10−7g16

b −
1.7372532 10−6g18

b − 2.89077030 10−7g20
b − 2.31637202 10−7g22

b −
2.05976723 10−7g24

b + 5.002386978 10−8g26
b − 1.02263213 10−7g28

b +
4.32838185 10−8g30

b − 3.40958978 10−8g32
b − 1.41692580 10−9g34

b +
8.62333 10−8g36

b − 2.9140127 10−7g38
b + 6.30326326 10−7g40

b
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Wilson loops in NSPT

Coefficient comparison

Comparison of coefficients for naive and boosted perturbative series
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Wilson loops in NSPT

Choice of coupling

g2
b > g2 (g2 = 1→ g2

b = 1.683): need the best possible perturbative
determination→ g2

b = g2/Wb,11(gb,n?)
Test: for large β = 6/g2 the (MC) measured Wilson loop should be
almost perturbative
Define ∆WNM(β) =

WNM,PT (β)−WNM,MC(β)

WNM,MC(β)

1e-05

0.0001

0.001

0.01

0.1

5.8 6 6.2 6.4 6.6 6.8

∆
W

11

β

∆W11,naive
∆W11,b,0
∆W11,b,1

green: g2
b = g2/W11(g,13); red: g2

b = g2/Wb,11(gb,13)
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Wilson loops in NSPT

Relative convergence

Compare relative convergence behaviour from

δNM(g,n?) =
|WNM(g,n?)−WNM,∞|

WNM,∞

for L = 12 and β = 6.

0.001

0.01

0.1

6 8 10 12 14 16

δ M
N

n⋆

δ11
δ21
δ31
δ22

0.0001

0.001

0.01

0.1

1

6 8 10 12 14 16

δ M
N

,b

n⋆

δ11,b
δ21,b
δ31,b
δ22,b

WNM,∞ - values for the summed up PT series in a model ansatz for
finite L
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Non perturbative parts

Ratios of Wilson loops

We consider the ratios

Rk ,m
NM,N′M′ =

(WNM,b(gb))k

(WN′M′ ,b(gb))m =
∑

n

[Rk ,m
NM,N′M′ ]

(n) g2n
b

together with the "naturalness condition"

k × Area[WNM ] = m × Area[WN′M′ ]

The coefficients show a similar behaviour as the boosted coefficients

[R1,3
13,11](n)

[R1,2
12,11](n)

1e-08
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1e-05

0.0001

0.001
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0.1

1

0 2 4 6 8 10 12 14 16

C
n

n

W11
W21
W31−W21/W

2
11

W21/W
2
11−W31/W
3
11

W31/W
3
11
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Non perturbative parts

Ratios of Wilson loops

We consider

Ã =
APT

AMC
=

APT

APT + ∆A
→ Ã ' 1− ∆A

APT

Taking for A the ratios introduced above

R̃k ,m
NM,N′M′ =

(
WNM,b,PT (n?)/WNM,MC

)k
/
(

WN′M′ ,b,PT (n?)/WN′M′ ,MC

)m

R̃2,1
11,21, R̃4,2

11,21 ∼ 1
(naturalness condition)

R̃3,3
11,21 unsuitable
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Non perturbative parts

Ratios of Wilson loops

We have the exact relation

∆WNM(W
N′ M′ ) =

(
exp

(
− d

dk
log
(

R̃k ,m
NM,N′M′

))
− 1
)
×WNM,b,PT

Using the Necco-Sommer relation β ↔ (a/r0) we get
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∆
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4
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4

∆W21(W11)
∆W31(W11)
∆W22(W11)

almost ideal ∼ a4 scaling behaviour
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Non perturbative parts

Condensate from ∆W11(W
N′M′ )

∆W11(WN′ M′ ) ∼ a4 → determination of 〈GG〉 as dimension=4 quantity
(n? = 13 as summation limit for boosted PT-series, r0 = 0.5 fm)

∆W11(W21) → 〈
αs

π
GG〉 = 0.054(2)(3) GeV4

∆W11(W31) → 〈
αs

π
GG〉 = 0.051(2)(2) GeV4

∆W11(W22) → 〈
αs

π
GG〉 = 0.046(3)(1) GeV4

∆W11(sub) → 〈
αs

π
GG〉 = 0.059(1)(5) GeV4

Compare to 〈αs
π GG〉SVZ ∼ 0.012 GeV4
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Summary

Summary

PT series coefficients do not show any factorial behaviour up to
n = 20 (not shown)
Finite lattice PT series can be represented (and parametrized)
very well by a hypergeometric model (not shown)
Boosted PT series are shown to be very useful
Non perturbative parts scale like ∼ a4

〈αs
π GG〉 obtained are larger than SVZ value
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Summary

Summary

PT series coefficients do not show any factorial behaviour up to
n = 20 (not shown)
Finite lattice PT series can be represented (and parametrized)
very well by a hypergeometric model (not shown)
Boosted PT series are shown to be very useful
Non perturbative parts scale like ∼ a4

〈αs
π GG〉 obtained are larger than SVZ value

Talk H. Perlt (Leipzig) The non-perturbative part of Wilson loops CompPhys11 18 / 19



Summary

Summary

PT series coefficients do not show any factorial behaviour up to
n = 20 (not shown)
Finite lattice PT series can be represented (and parametrized)
very well by a hypergeometric model (not shown)
Boosted PT series are shown to be very useful
Non perturbative parts scale like ∼ a4

〈αs
π GG〉 obtained are larger than SVZ value

Talk H. Perlt (Leipzig) The non-perturbative part of Wilson loops CompPhys11 18 / 19



Summary

Summary

PT series coefficients do not show any factorial behaviour up to
n = 20 (not shown)
Finite lattice PT series can be represented (and parametrized)
very well by a hypergeometric model (not shown)
Boosted PT series are shown to be very useful
Non perturbative parts scale like ∼ a4

〈αs
π GG〉 obtained are larger than SVZ value

Talk H. Perlt (Leipzig) The non-perturbative part of Wilson loops CompPhys11 18 / 19



Summary

Summary

PT series coefficients do not show any factorial behaviour up to
n = 20 (not shown)
Finite lattice PT series can be represented (and parametrized)
very well by a hypergeometric model (not shown)
Boosted PT series are shown to be very useful
Non perturbative parts scale like ∼ a4

〈αs
π GG〉 obtained are larger than SVZ value

Talk H. Perlt (Leipzig) The non-perturbative part of Wilson loops CompPhys11 18 / 19



Summary

Acknowledgements

Thanks to the RCNP at Osaka university for using its NEC SX-9
computer
Partly supported by DFG and by the Research Executive Agency
(REA) of the European Union

Talk H. Perlt (Leipzig) The non-perturbative part of Wilson loops CompPhys11 19 / 19



Summary

Acknowledgements

Thanks to the RCNP at Osaka university for using its NEC SX-9
computer
Partly supported by DFG and by the Research Executive Agency
(REA) of the European Union

Talk H. Perlt (Leipzig) The non-perturbative part of Wilson loops CompPhys11 19 / 19


	Introduction
	Wilson loops in NSPT
	Non perturbative parts
	Summary

