The non-perturbative part of Wilson loops

R. Horsley¹, G. Hotzel², E.-M. Ilgenfritz², R. Millo³, Y. Nakamura⁴,
 H. Perlt⁵, P.E.L. Rakow³, G. Schierholz⁶ and A. Schiller⁵

¹University Edinburgh, ²Humboldt Universität Berlin, ³University Liverpool, ⁴RIKEN, ⁵Universität Leipzig, ⁶DESY

CompPhys11, Leipzig, November 2011

- 2 Wilson loops in NSPT
- 3 Non perturbative parts
- 4 Summary

Talk H. Perlt (Leipzig)

- 2 Wilson loops in NSPT
- 3 Non perturbative parts
- 3 Summary

- 2 Wilson loops in NSPT
- 3 Non perturbative parts

Talk H. Perlt (Leipzig)

- 2 Wilson loops in NSPT
- 3 Non perturbative parts

Talk H. Perlt (Leipzig)

(a)

Motivation I

- 1978: Shifman, Vainshtein and Zakharov introduced the non-perturbative gluon condensate $\langle \frac{\alpha}{\pi} G G \rangle$
- Lattice gauge theory provides a promising tool to calculate it from Wilson loops.
- In the early 80th first computations : Plaquette(1981 Banks et al., DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz et al., Ilgenfritz et al.)

 $\langle \frac{\alpha}{\pi} G G \rangle$ is conventionally derived using the plaquette *P* from the relation

$$P_{MC} = P_{pert} - a^4 rac{\pi^2}{36} \left[rac{-b_0 g^2}{eta(g)}
ight] \langle rac{lpha}{\pi} GG
angle$$

 $\rightarrow P_{pert}$ is needed to very high order in LPT!

• • • • • • • • • • • • •

Motivation I

- 1978: Shifman, Vainshtein and Zakharov introduced the non-perturbative gluon condensate $\langle \frac{\alpha}{\pi} G G \rangle$
- Lattice gauge theory provides a promising tool to calculate it from Wilson loops.
- In the early 80th first computations : Plaquette(1981 Banks et al., DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz et al., llgenfritz et al.)

 $\langle \frac{lpha}{\pi} G G \rangle$ is conventionally derived using the plaquette *P* from the relation

$$P_{MC} = P_{pert} - a^4 rac{\pi^2}{36} \left[rac{-b_0 g^2}{eta(g)}
ight] \langle rac{lpha}{\pi} GG
angle$$

 $\rightarrow P_{pert}$ is needed to very high order in LPT!

(日)

Motivation I

- 1978: Shifman, Vainshtein and Zakharov introduced the non-perturbative gluon condensate $\langle \frac{\alpha}{\pi} G G \rangle$
- Lattice gauge theory provides a promising tool to calculate it from Wilson loops.
- In the early 80th first computations : Plaquette(1981 Banks et al., DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz et al., Ilgenfritz et al.)

 $\langle \frac{\alpha}{\pi} G G \rangle$ is conventionally derived using the plaquette *P* from the relation

$$P_{MC} = P_{pert} - a^4 rac{\pi^2}{36} \left[rac{-b_0 g^2}{eta(g)}
ight] \langle rac{lpha}{\pi} GG
angle$$

 $\rightarrow P_{pert}$ is needed to very high order in LPT!

Motivation I

- 1978: Shifman, Vainshtein and Zakharov introduced the non-perturbative gluon condensate $\langle \frac{\alpha}{\pi} G G \rangle$
- Lattice gauge theory provides a promising tool to calculate it from Wilson loops.
- In the early 80th first computations : Plaquette(1981 Banks et al., DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz et al., Ilgenfritz et al.)

 $\langle \frac{\alpha}{\pi} G G \rangle$ is conventionally derived using the plaquette *P* from the relation

$$P_{MC} = P_{pert} - a^4 rac{\pi^2}{36} \left[rac{-b_0 g^2}{eta(g)}
ight] \langle rac{lpha}{\pi} GG
angle$$

 $\rightarrow P_{pert}$ is needed to very high order in LPT!

Motivation I

- 1978: Shifman, Vainshtein and Zakharov introduced the non-perturbative gluon condensate $\langle \frac{\alpha}{\pi} G G \rangle$
- Lattice gauge theory provides a promising tool to calculate it from Wilson loops.
- In the early 80th first computations : Plaquette(1981 Banks et al., DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz et al., Ilgenfritz et al.)

 $\langle \frac{\alpha}{\pi} G G \rangle$ is conventionally derived using the plaquette *P* from the relation

$$P_{MC} = P_{pert} - a^4 rac{\pi^2}{36} \left[rac{-b_0 g^2}{eta(g)}
ight] \langle rac{lpha}{\pi} GG
angle$$

 $\rightarrow P_{pert}$ is needed to very high order in LPT!

Motivation I

- 1978: Shifman, Vainshtein and Zakharov introduced the non-perturbative gluon condensate $\langle \frac{\alpha}{\pi} G G \rangle$
- Lattice gauge theory provides a promising tool to calculate it from Wilson loops.
- In the early 80th first computations : Plaquette(1981 Banks et al., DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz et al., Ilgenfritz et al.)

 $\langle \frac{\alpha}{\pi} G G \rangle$ is conventionally derived using the plaquette *P* from the relation

$$\mathcal{P}_{MC} = \mathcal{P}_{pert} - a^4 rac{\pi^2}{36} \left[rac{-b_0 g^2}{eta(g)}
ight] \langle rac{lpha}{\pi} GG
angle \, ,$$

 $\rightarrow P_{pert}$ is needed to very high order in LPT!

・ロト ・同ト ・ヨト ・ヨト

General interest in the behavior of perturbative series in QCD:

$$Q(n^{\star}) \sim \sum_{n}^{n^{\star}} a_n \lambda^n$$

• Series are asymptotic, and assumed that for large *n* the leading growth of the coefficients *a_n* can be parametrized

$$a_n \sim C_1 (C_2)^n \Gamma(n+C_3)$$

• Needed: perturbative techniques which reach orders (*n**)of the perturbative series where a possible set-in of this assumed behavior can be tested.

General interest in the behavior of perturbative series in QCD:

$$Q(n^{\star}) \sim \sum_{n}^{n^{\star}} a_n \lambda^n$$

 Series are asymptotic, and assumed that for large *n* the leading growth of the coefficients *a_n* can be parametrized

$$a_n \sim C_1 (C_2)^n \Gamma(n+C_3)$$

• Needed: perturbative techniques which reach orders (*n**)of the perturbative series where a possible set-in of this assumed behavior can be tested.

• General interest in the behavior of perturbative series in QCD:

$$Q(n^{\star}) \sim \sum_{n}^{n^{\star}} a_n \lambda^n$$

 Series are asymptotic, and assumed that for large *n* the leading growth of the coefficients *a_n* can be parametrized

$$a_n \sim C_1 (C_2)^n \Gamma(n+C_3)$$

• Needed: perturbative techniques which reach orders (*n**)of the perturbative series where a possible set-in of this assumed behavior can be tested.

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Based on the Langevin quantization method of Parisi/Wu
- NSPT drops the concept of Feynman diagrams uses the action with the corresponding perturbative expansion of fields
- Talk of A. Schiller at CompPhys07 about NSPT
- Talk of H. Perlt at CompPhys09 about first results on NSPT+Wilson loops

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Based on the Langevin quantization method of Parisi/Wu
- NSPT drops the concept of Feynman diagrams uses the action with the corresponding perturbative expansion of fields
- Talk of A. Schiller at CompPhys07 about NSPT
- Talk of H. Perlt at CompPhys09 about first results on NSPT+Wilson loops

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Based on the Langevin quantization method of Parisi/Wu
- NSPT drops the concept of Feynman diagrams uses the action with the corresponding perturbative expansion of fields
- Talk of A. Schiller at CompPhys07 about NSPT
- Talk of H. Perlt at CompPhys09 about first results on NSPT+Wilson loops

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Based on the Langevin quantization method of Parisi/Wu
- NSPT drops the concept of Feynman diagrams uses the action with the corresponding perturbative expansion of fields
- Talk of A. Schiller at CompPhys07 about NSPT
- Talk of H. Perlt at CompPhys09 about first results on NSPT+Wilson loops

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Based on the Langevin quantization method of Parisi/Wu
- NSPT drops the concept of Feynman diagrams uses the action with the corresponding perturbative expansion of fields
- Talk of A. Schiller at CompPhys07 about NSPT
- Talk of H. Perlt at CompPhys09 about first results on NSPT+Wilson loops

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Based on the Langevin quantization method of Parisi/Wu
- NSPT drops the concept of Feynman diagrams uses the action with the corresponding perturbative expansion of fields
- Talk of A. Schiller at CompPhys07 about NSPT
- Talk of H. Perlt at CompPhys09 about first results on NSPT+Wilson loops

• Pure SU(3) gauge theory

- Lattice sizes L^4 with L = 4, 6, 8, 12
- Loop order n = 20
- Computer ressources: ITP, Computer center of Leipzig university, RCNP Osaka

• □ ▶ • □ ▶ • □ ▶

- Pure SU(3) gauge theory
- Lattice sizes L^4 with L = 4, 6, 8, 12
- Loop order n = 20
- Computer ressources: ITP, Computer center of Leipzig university, RCNP Osaka

- Pure SU(3) gauge theory
- Lattice sizes L^4 with L = 4, 6, 8, 12
- Loop order n = 20
- Computer ressources: ITP, Computer center of Leipzig university, RCNP Osaka

- Pure SU(3) gauge theory
- Lattice sizes L^4 with L = 4, 6, 8, 12
- Loop order n = 20
- Computer ressources: ITP, Computer center of Leipzig university, RCNP Osaka

< D > < P > < P >

Wilson loops

Wilson loops on the lattice are ordered products of gauge link operators $U_{\mu}(x) = \exp \left(a g T^c A^c_{\mu}(x)\right)$

Talk H. Perlt (Leipzig)

A >

Wilson loops in NSPT

Connection to condensate (a = 1)

$$W_{NM} = U_{\mu}(x) \dots U_{\mu}(x + (N-1)\mu) U_{\nu}(x + N\mu) \dots U_{\nu}(x + N\mu + (M-1)\nu) U_{\nu}^{\dagger}(x + (N-1)\mu + M\nu) \dots U_{\mu}^{\dagger}(x + M\nu) U_{\nu}^{\dagger}(x + (M-1)\nu) \dots U_{\nu}^{\dagger}(x)$$

(plaquette: $P = W_{11} = U_{\mu}(x)U_{\nu}(x+\mu)U_{\mu}^{\dagger}(x+\nu)U_{\nu}^{\dagger}(x)$)

Shifman (1980):

$$\langle 1 - W_{NM} \rangle \sim rac{\pi^2}{12N_c} \left< rac{\alpha_s}{\pi} GG \right> S_{NM}^2 + ext{higher dim. terms}$$

 S_{NM} : area of Wilson loop (here: $N \times M$) $GG \equiv G^{c}_{\mu\nu}G^{c}_{\mu\nu}$ $G^{c}_{\mu\nu} = \partial_{\mu}A^{c}_{\nu} - \partial_{\nu}A^{c}_{\mu} - g f^{cab}A^{a}_{\mu}A^{b}_{\nu}$

Wilson loops in NSPT

We write the perturbative expansion for a Wilson loop W_{NM} as

$$W_{NM}(g,n^{\star}) = \sum_{n=0}^{n^{\star}} W_{NM}^{(n)} g^{2n}$$

As an example for W_{11} and a lattice of L = 12:

$$\begin{split} & W_{11}(g,20) = 1 - 0.333333g^2 - 0.033911g^4 - 0.0137061g^6 - 0.00725108g^8 - \\ & 0.00441001g^{10} - 0.00292153g^{12} - 0.0020518g^{14} - 0.00150358g^{16} - \\ & 0.00113812g^{18} - 0.00088372g^{20} - 0.000700396g^{22} - 0.000564629g^{24} - \\ & 0.000461837g^{26} - 0.000382568g^{28} - 0.000320464g^{30} - 0.000271108g^{32} - \\ & 0.000231376g^{34} - 0.000198948g^{36} - 0.000172211g^{38} - 0.000149902g^{40} \end{split}$$

(g: bare lattice coupling)

Wilson loops in NSPT

We write the perturbative expansion for a Wilson loop W_{NM} as

$$W_{NM}(g,n^{\star}) = \sum_{n=0}^{n^{\star}} W_{NM}^{(n)} g^{2n}$$

As an example for W_{11} and a lattice of L = 12:

 $\begin{array}{l} W_{11}(g,20) = 1 - 0.333333g^2 - 0.033911g^4 - 0.0137061g^6 - 0.00725108g^8 - \\ 0.00441001g^{10} - 0.00292153g^{12} - 0.0020518g^{14} - 0.00150358g^{16} - \\ 0.00113812g^{18} - 0.00088372g^{20} - 0.000700396g^{22} - 0.000564629g^{24} - \\ 0.000461837g^{26} - 0.000382568g^{28} - 0.000320464g^{30} - 0.000271108g^{32} - \\ 0.000231376g^{34} - 0.000198948g^{36} - 0.000172211g^{38} - 0.000149902g^{40} \end{array}$

(g: bare lattice coupling)

< ロ > < 同 > < 三 > < 三 > -

Boosted series

Expansion parameter *g* for the perturbative computation of Wilson loops is not really small ($g_{min}^2 < g^2 < g_{max}^2$):

$g_{max}^2 \sim 1.04$: convergence radius for our finite lattice series $g_{min}^2 \sim 0.95$: confinement region

Expansion in bare lattice coupling g is disadvantegeous because of lattice artefacts \rightarrow boosted coupling $g_b^2 = g^2/W_{11}(g, n^*)$

$$\begin{split} & W_{b,11}(g_b,20) = \\ & 1 - 0.333333g_b^2 + 0.0772001g_b^4 - 0.0168321g_b^6 + 0.00306193g_b^8 - \\ & 0.000618686g_b^{10} + 0.0000871841g_b^{12} - 0.0000242642g_b^{14} + 8.30905710^{-7}g_b^{16} - \\ & 1.737253210^{-6}g_b^{18} - 2.8907703010^{-7}g_b^{20} - 2.3163720210^{-7}g_b^{22} - \\ & 2.0597672310^{-7}g_b^{24} + 5.00238697810^{-8}g_b^{26} - 1.0226321310^{-7}g_b^{28} + \\ & 4.3283818510^{-8}g_b^{30} - 3.4095897810^{-8}g_b^{32} - 1.4169258010^{-9}g_b^{34} + \\ & 8.6233310^{-8}g_b^{36} - 2.914012710^{-7}g_b^{38} + 6.3032632610^{-7}g_b^{40} \end{split}$$

Boosted series

Expansion parameter *g* for the perturbative computation of Wilson loops is not really small ($g_{min}^2 < g^2 < g_{max}^2$):

 $g_{max}^2 \sim 1.04$: convergence radius for our finite lattice series $g_{min}^2 \sim 0.95$: confinement region

Expansion in bare lattice coupling g is disadvantegeous because of lattice artefacts \rightarrow boosted coupling $g_b^2 = g^2/W_{11}(g, n^*)$

$$\begin{split} & W_{b,11}(g_b,20) = \\ & 1 - 0.333333g_b^2 + 0.0772001g_b^4 - 0.0168321g_b^6 + 0.00306193g_b^8 - \\ & 0.000618686g_b^{10} + 0.0000871841g_b^{12} - 0.0000242642g_b^{14} + 8.30905710^{-7}g_b^{16} - \\ & 1.737253210^{-6}g_b^{18} - 2.8907703010^{-7}g_b^{20} - 2.3163720210^{-7}g_b^{22} - \\ & 2.0597672310^{-7}g_b^{24} + 5.00238697810^{-8}g_b^{26} - 1.0226321310^{-7}g_b^{28} + \\ & 4.3283818510^{-8}g_b^{30} - 3.4095897810^{-8}g_b^{32} - 1.4169258010^{-9}g_b^{34} + \\ & 8.6233310^{-8}g_b^{36} - 2.914012710^{-7}g_b^{38} + 6.3032632610^{-7}g_b^{40} \end{split}$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Boosted series

Expansion parameter *g* for the perturbative computation of Wilson loops is not really small ($g_{min}^2 < g^2 < g_{max}^2$):

 $g_{max}^2 \sim 1.04$: convergence radius for our finite lattice series $g_{min}^2 \sim 0.95$: confinement region

Expansion in bare lattice coupling g is disadvantegeous because of lattice artefacts \rightarrow boosted coupling $g_b^2 = g^2/W_{11}(g, n^*)$

 $\begin{array}{l} W_{b,11}(g_b,20) = \\ 1-0.333333g_b^2+0.0772001g_b^4-0.0168321g_b^6+0.00306193g_b^8-\\ 0.000618686g_b^0+0.0000871841g_b^{12}-0.0000242642g_b^{14}+8.309057\,10^{-7}g_b^{16}-\\ 1.7372532\,10^{-6}g_b^{18}-2.89077030\,10^{-7}g_b^{20}-2.31637202\,10^{-7}g_b^{22}-\\ 2.05976723\,10^{-7}g_b^{24}+5.002386978\,10^{-8}g_b^{26}-1.02263213\,10^{-7}g_b^{28}+\\ 4.32838185\,10^{-8}g_b^{30}-3.40958978\,10^{-8}g_b^{32}-1.41692580\,10^{-9}g_b^{34}+\\ 8.62333\,10^{-8}g_b^{36}-2.9140127\,10^{-7}g_b^{38}+6.30326326\,10^{-7}g_b^{40} \end{array}$

<ロ> <同> <同> < 同> < 同> < 同> = 三目

Coefficient comparison

Comparison of coefficients for naive and boosted perturbative series

Choice of coupling

 $g_b^2 > g^2 \ (g^2 = 1 \rightarrow g_b^2 = 1.683)$: need the best possible perturbative determination $\rightarrow g_b^2 = g^2 / W_{b,11}(g_b, n^*)$ Test: for large $\beta = 6/g^2$ the (MC) measured Wilson loop should be almost perturbative Define $\Delta W_{NM}(\beta) = \frac{W_{NM,PT}(\beta) - W_{NM,MC}(\beta)}{W_{MM,MC}(\beta)}$

green:
$$g_b^2 = g^2 / W_{11}(g, 13)$$
; red: $g_b^2 = g^2 / W_{b,11}(g_b, 13)$

Talk H. Perlt (Leipzig)

The non-perturbative part of Wilson loops

Relative convergence

Compare relative convergence behaviour from

$$\delta_{NM}(\boldsymbol{g},\boldsymbol{n}^{\star}) = rac{|W_{NM}(\boldsymbol{g},\boldsymbol{n}^{\star}) - W_{NM,\infty}|}{W_{NM,\infty}}$$

for L = 12 and $\beta = 6$. 0.10.1 $\delta_{MN,b}$ δ_{MN} 0.010.01 0.001 0.001 0.0001 6 8 10 12 14 16 6 8 10 12 14 n^{\star} n^{\star}

 $W_{NM,\infty}$ - values for the summed up PT series in a model ansatz for finite L

Talk H. Perlt (Leipzig)

Ratios of Wilson loops

We consider the ratios

$$R_{NM,N'M'}^{k,m} = \frac{(W_{NM,b}(g_b))^k}{(W_{N'M',b}(g_b))^m} = \sum_n [R_{NM,N'M'}^{k,m}]^{(n)} g_b^{2n}$$

together with the "naturalness condition"

$$k \times \text{Area}[W_{NM}] = m \times \text{Area}[W_{N'M'}]$$

The coefficients show a similar behaviour as the boosted coefficients

The non-perturbative part of Wilson loops

Ratios of Wilson loops

We consider

$$ilde{\mathcal{A}} = rac{\mathcal{A}_{PT}}{\mathcal{A}_{MC}} = rac{\mathcal{A}_{PT}}{\mathcal{A}_{PT} + \Delta_{\mathcal{A}}} \quad
ightarrow \quad ilde{\mathcal{A}} \simeq 1 - rac{\Delta_{\mathcal{A}}}{\mathcal{A}_{PT}}$$

Taking for ${\mathcal A}$ the ratios introduced above

$$\tilde{\mathsf{R}}_{\mathsf{NM},\mathsf{N}'\mathsf{M}'}^{k,m} = \left(\mathsf{W}_{\mathsf{NM},b,\mathsf{PT}}(\mathsf{n}^{\star})/\mathsf{W}_{\mathsf{NM},\mathsf{MC}}\right)^{k} / \left(\mathsf{W}_{\mathsf{N}'\mathsf{M}',b,\mathsf{PT}}(\mathsf{n}^{\star})/\mathsf{W}_{\mathsf{N}'\mathsf{M}',\mathsf{MC}}\right)^{m}$$

Ratios of Wilson loops

We have the exact relation

$$\Delta_{W_{NM}(W_{N^{'}M^{'}})} = \left(\exp\left(-\frac{d}{dk}\log\left(\tilde{R}_{NM,N^{'}M^{'}}^{k,m}\right)\right) - 1\right) \times W_{NM,b,PT}$$

Using the Necco-Sommer relation $\beta \leftrightarrow (a/r_0)$ we get

almost ideal $\sim a^4$ scaling behaviour

Talk H. Perlt (Leipzig)

э

Image: A math

Condensate from $\Delta_{W_{11}(W_{N'M'})}$

 $\Delta_{W_{11}(W_{N'M'})} \sim a^4 \quad \rightarrow \text{determination of } \langle GG \rangle \text{ as dimension=4 quantity}$ $(n^* = 13 \text{ as summation limit for boosted PT-series}, r_0 = 0.5 \text{ fm})$

$$\begin{split} \Delta_{W_{11}(W_{21})} &\to \langle \frac{\alpha_s}{\pi} \ GG \rangle &= 0.054(2)(3) \,\mathrm{GeV^4} \\ \Delta_{W_{11}(W_{31})} &\to \langle \frac{\alpha_s}{\pi} \ GG \rangle &= 0.051(2)(2) \,\mathrm{GeV^4} \\ \Delta_{W_{11}(W_{22})} &\to \langle \frac{\alpha_s}{\pi} \ GG \rangle &= 0.046(3)(1) \,\mathrm{GeV^4} \\ \Delta_{W_{11}(sub)} &\to \langle \frac{\alpha_s}{\pi} \ GG \rangle &= 0.059(1)(5) \,\mathrm{GeV^4} \end{split}$$

Compare to $\langle \frac{\alpha_s}{\pi} GG \rangle_{SVZ} \sim 0.012 \, {
m GeV^4}$

- PT series coefficients do not show any factorial behaviour up to *n* = 20 (*not shown*)
- Finite lattice PT series can be represented (and parametrized) very well by a hypergeometric model (*not shown*)
- Boosted PT series are shown to be very useful
- Non perturbative parts scale like $\sim a^4$
- $\langle \frac{\alpha_s}{\pi} GG \rangle$ obtained are larger than SVZ value

< D > < P > < E > < E</p>

- PT series coefficients do not show any factorial behaviour up to *n* = 20 (*not shown*)
- Finite lattice PT series can be represented (and parametrized) very well by a hypergeometric model (*not shown*)
- Boosted PT series are shown to be very useful
- Non perturbative parts scale like $\sim a^4$
- $\langle \frac{\alpha_s}{\pi} GG \rangle$ obtained are larger than SVZ value

- PT series coefficients do not show any factorial behaviour up to *n* = 20 (*not shown*)
- Finite lattice PT series can be represented (and parametrized) very well by a hypergeometric model (*not shown*)
- Boosted PT series are shown to be very useful
- Non perturbative parts scale like $\sim a^4$
- $\langle \frac{\alpha_s}{\pi} GG \rangle$ obtained are larger than SVZ value

- PT series coefficients do not show any factorial behaviour up to *n* = 20 (*not shown*)
- Finite lattice PT series can be represented (and parametrized) very well by a hypergeometric model (*not shown*)
- Boosted PT series are shown to be very useful
- Non perturbative parts scale like $\sim a^4$
- $\langle \frac{\alpha_s}{\pi} GG \rangle$ obtained are larger than SVZ value

- PT series coefficients do not show any factorial behaviour up to *n* = 20 (*not shown*)
- Finite lattice PT series can be represented (and parametrized) very well by a hypergeometric model (*not shown*)
- Boosted PT series are shown to be very useful
- Non perturbative parts scale like $\sim a^4$
- $\langle \frac{\alpha_s}{\pi} GG \rangle$ obtained are larger than SVZ value

Acknowledgements

Thanks to the RCNP at Osaka university for using its NEC SX-9 computer

• Partly supported by DFG and by the Research Executive Agency (REA) of the European Union

< D > < P > < E > < E</p>

Acknowledgements

- Thanks to the RCNP at Osaka university for using its NEC SX-9 computer
- Partly supported by DFG and by the Research Executive Agency (REA) of the European Union