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Monte Carlo methods

)

Powerful and flexible method to study critical phenomena

General feature:

(]

1
v/computational time

accuracy
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In order to improve the accuracy: improved estimators

@ Use of covariance analysis:
- add control variates, whose expectation value vanish?!
- compute the optimal weighted average of different estimates of a
critical exponent?
Our method:
- Optimization of a Finite-Size Scaling method
- It allows for a significant reduction of the error bars
- It does not require additional computational time
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Finite-Size Scaling

@ A system in a finite volume of linear size L

@ Finite-Size Scaling (FSS) works in region of parameters where § ~ L
@ FSS behavior of long-ranged quantities

T-T.

_ X 1/v —
O = LXf(tLY"), t= T

E.g. Susceptibility x oc L2~7f(tLY/")

@ Renormalization-Group invariant quantities R
R = F(tLY")

E.g. R=¢/L, Binder ratios, etc. ..
Also called phenomenological couplings
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Finite-Size Scaling at fixed phenomenological coupling

@ We fix a phenomenological coupling R to a constant Ry
R(ﬁv L) = Rf
= ﬂf(l.) such that R(ﬂf(L), L) = Ry

@ From FSS relation R = F(tL'/"), t = (T — T.)/ T = /3 — 1:

Br(L) — Be o L= generic Ry
Be(L) = Be oc L7HV=, Rr = R* = F(0)

@ All the other observables O(/3, L) are calculated at 3 = (¢(L)
x(Be(L), L) oc L277, susceptibility

g—g (Be(L), L) oc LMY

M. Hasenbusch, J. Phys. A 32, 4851 (1999)
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Finite-Size Scaling at fixed phenomenological coupling

@ It does not require a precise knowledge of (.

@ Reduced error bars by fixing £/L:

- Fully frustrated XY model'
- Randomly Dilute Ising Universality class?
- Ising model in d = 3, 4, 53

@ Similarities with the Phenomenological Renormalization method:

- Two system sizes are enforced to share a common value of /L
- Reported reduction of error bars*
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Finite-Size Scaling at fixed phenomenological coupling

Why there is a reduction of the error bars?

Notation:

@ Simulations at 8 = Brun
@ An observable O is calculated from a statistical estimator O
0=0+60, O=E[0]

@ We choose to fix a phenomenological coupling R sampled using the
estimator R

@ We fix R(8 = B¢(L),L) = R¢ and calculate Of(L) = O(83 = S, L)
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Finite-Size Scaling at fixed phenomenological coupling

@ For (3 close to Brun
/I%(ﬂ) = /'R\J + ﬁ/(/@ - /Brun)a /F\\) == /R\J(,Brun), RI = 8R/&8

@ Solving R= R
~ R — R¢
51‘ = ﬁrun - //?\/
= we trade the fluctuations of R for the fluctuations of ¢

@ For a generic observable O calculated at 3¢

s A ~ ~R-R
Or~0+0(8~Brum) =0 — O/Tf.
@ The variance of 5,; is, to the lowest order in the fluctuations

/

VAR[Of] = VAR[O] + (%) VAR[R] — 2 COV[0. R
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Optimization of Finite-Size Scaling

Can we optimize the Finite-Size Scaling?

@ Consider N phenomenological couplings Ry,..., Ry
@ We define the RG-invariant quantity R({\;}) = >, \iR;i
@ We consider FSS at fixed phenomenological coupling R({\i})
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Optimization of Finite-Size Scaling

Can we optimize the Finite-Size Scaling?
@ Consider N phenomenological couplings Ry,..., Ry
@ We define the RG-invariant quantity R({\;}) = >, \iR;i
@ We consider FSS at fixed phenomenological coupling R({\;})

Problem: given an observable O, what are the coefficients {\;} that
minimize the value of Of?

/ /
Minimize: VAR[Of] = VAR[O] + (g) VAR[R] — 22COV[O R]
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Optimization of Finite-Size Scaling

Can we optimize the Finite-Size Scaling?

@ Consider N phenomenological couplings Ry,..., Ry
@ We define the RG-invariant quantity R({\;}) = >, \iR;i
@ We consider FSS at fixed phenomenological coupling R({\i})

Problem: given an observable O, what are the coefficients {\;} that
minimize the value of Of?

N\ 2 /
Minimize: VAR[Of] = VAR[O] + (g) VAR[R] — 22COV[O R]
RTM-IN - O/

Solution:  \; = — RTN-IR (M—IR’)i—i—(M—lN);,

with M = COV[R;, R;], N; = COV[O,R]], R, = R.
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Some observations

o Finite-Size Scaling at fixed R({\i}) = >_; A\iR;, with

e (M7R) & (M)

M; = COVIR,R],  N;= COVI[O,R].

@ M and N are related to the transition matrix of the Markov chain
= they depend on the model and on the dynamics

@ {\;} can be optimized separately for every observable O

@ FSS limit is correctly defined when {\;} are the same for all sizes.
The optimal {);} depend on the lattice size.

Possible strategy:
choose the optimal {\;} obtained from the largest available lattice.
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Test: Ising model in d =2, 3

H = —JZO’,'UJ', o; = +1.

@ Four RG-invariant quantities:

M4 MO
Us = (<I\/12)>2’ Us = <<M2>>3
Re = ¢/L, Ry =272,

with M = >". 0; magnetization, £ second-moment correlation length
Z, partition function with antiperiodic b.c. on one direction,
Z,, partition function with fully periodic b.c.

@ Observables

X = ZO’,‘O‘_,'/VO( L2=n

U, au6 ORe 1
93" 08" 9P

1M.Hasenbusch, Physica A 197, 423 (1993)
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Results d = 2

standard error bar )2
error bar at fixed R

@ CPU gain for Metropolis dynamics

@ Gain in CPU time is given by (

X: gain ~ 20; gain at fixed Re < 4
0U4/003,0Us/03: gain ~ 30 — 50; gain at fixed Uy, Us ~ 6 — 10
OR¢/03: gain ~2 —3; gain at fixed Us, Us, Re, Rz S 1

@ CPU gain for Wolff single-cluster dynamics

X: gain ~ 6; gain at fixed Re ~ 3
0Us/03,0Us/03: gain ~6—9; gain at fixed Uy, Ug ~2 — 4
OR¢/0f3: gain ~ 2 —3; gain at fixed Us, Us, Re, Rz S 1

@ Gain in computational time roughly independent on L = 8 — 128
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Results d = 3

standard error bar )2
error bar at fixed R

@ CPU gain for Metropolis dynamics

@ Gain in CPU time is given by (

X: gain ~ 20 — 30; gain at fixed Re <9
0Us/0p3,0Us/03: gain ~ 20 — 30; gain at fixed U, Us < 3
OR¢/03: gain ~ 4 — 6; gain at fixed Us, Us, Re, Rz S 1

@ CPU gain for Wolff single-cluster dynamics

X: gain ~ 6 — 10; gain at fixed Re ~ 5
0Us/03,0Us/03: gain ~5—8; gain at fixed Uy, Usg ~1—2
OR¢/03: gain ~ 3; gain at fixed Us, Us, Re, Rz S 1

@ Gain in computational time roughly independent on L = 8 — 128
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@ Substantial reduction of the error bars
@ It does not require additional computational time

@ Test on the Ising model

- CPU gains are roughly independent on the lattice L
- CPU gains are more pronounced for Metropolis update

@ Other possible applications:

- “Improved models”
- Models with quenched disorder

Ref: F. Parisen Toldin, Phys. Rev. E 84, 025703(R)
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