CompPhys2011 Leipzig November 24-25,2011

Confined systems. New theory and applications

Fluids in mesopores: introduction to the phenomenon

<u>Theoretical</u>: •shortcomings of standard thermodynamics for confined systems •introducing the new concept of COS (=Curves of States)

Simulation of Pressure Jump Experiments: •role of COS for dynamic behavior

Harald Morgner

Wilhelm Ostwald Institute for Physical and Theoretical Chemistry Leipzig University, Linnéstrasse 2, D-04103 Leipzig, hmorgner@rz.uni-leipzig.de natural phenomena•hydrology of ground water•natural purification and pollution

industrial activities
oil extraction
mixture separation, filtering
catalysis
sensor development

basic research

Adsorption Hysteresis in Porous Material

Theoretical

Method

Results

Curves of States (introduction)

H. Morgner

COS and concept of applying canonical boundary conditions

COS allow to retrieve isotherm

J. Chem. Chem. Eng. 5 (2011) 456 - 472

Theoretical

Method

Results

Curves of States (shape)

COS and concept of applying canonical boundary conditions COS allow to retrieve isotherm

J. Chem. Chem. Eng. 5 (2011) 456 - 472

Theoretical Method Resul

Curves of States (relation to thermodynamics)

Theoretical Method Result

literature: attempts to save thermodynamics

Neimark&Vishnyakov

J.Phys.Chem. <u>B110</u> (2006) 9403-12

"....the true GCE isotherm cannot be sampled in practical simulations...."
$$\begin{split} N_{\text{GCE}}(\mu, V, T) &= \\ \frac{\bar{N}_{\text{v}}(\mu) \, \exp(-\Omega_{\text{v}}(\mu, V, T)/kT) + \bar{N}_{\text{l}}(\mu) \, \exp(-\Omega_{\text{l}}(\mu, V, T)/kT)}{\exp(-\Omega_{\text{v}}(\mu, V, T)/kT) + \exp(-\Omega_{\text{l}}(\mu, V, T)/kT)} \end{split}$$

Theoretical

Method

Results pressure jump process

driving force: gradient of chemical potential

Diffusion treated by

Onsager ansatz

$$\vec{J} = -\frac{L}{T} \cdot grad\mu$$

luction Theoretical M

Theoretical

Method

Theoretical

Method

Theoretica

Method

Theoretical

Method

Theoretical

Method

Theoretical

Method

Theoretical

Method

Theoretical

Method

Adsorption Hysteresis in Porous Material

Quotations from literature:

Metastable states appear to be the most important aspect.¹

.. in the experimental system the metastable states just do not have time enough to relax...¹

...a failure of the system to equilibrate.²

This explains why hysteresis, although representing a departure from equilibrium, is so reproducible in experiment.²

¹ D.Wallacher et al., Phys. Rev. Lett. 92, (2004) 195704-1

² R.Valiullin et al., Nature Letters, <u>443 (</u>2006) 965-8

Adsorption Hysteresis in Porous Material

Quotations from literature:

However, even in experiments in which accessible observation times are much longer than in simulations, a hysteresis is usually observed, whose properties are quite reproducible.¹

¹ J. Puibasset et al. J.Chem.Phys. **131** (2009) 124123-1/10

IntroductionTheoreticalMethod
DFTResults
DFT
$$E_{pot}(\vec{r}) = \int_{volume} g(|\vec{r} - \vec{r}'|) \cdot V(|\vec{r} - \vec{r}'|) \rho(\vec{r}') d^3 r'$$
potential energyHomogeneous case: $E_{pot}^{hom} = \rho \cdot \int_{volume} g(|\vec{r} - \vec{r}'|) \cdot V(|\vec{r} - \vec{r}'|) d^3 r'$ $E_{pot}^{hom} = \rho \cdot \int_{0}^{\infty} \int_{0}^{2\pi} \int_{-\pi}^{\pi} g(r) \cdot V(r) r^2 \sin(\theta) d\theta d\phi dr$ $E_{pot}^{hom} = \rho \cdot 4\pi \int_{0}^{\infty} g(r) \cdot V(r) r^2 dr$ Radial convolution
function $f_r(r) = \frac{g(r) \cdot V(r)}{E_{pot}^{hom}(\rho) \cdot \rho^{-1}}$ with $1 = 4\pi \int_{0}^{\infty} f_r(r) \cdot r^2 dr$

Theoretical

MethodResultsconvolution function

Inhomogeneous case:

$$E_{pot}^{inh}(\vec{r}) = \int_{volume} E_{pot}^{hom}(\rho(\vec{r})) \cdot \rho^{-1}(\vec{r}) \cdot f_r(|\vec{r} - \vec{r}'|) \cdot \rho(\vec{r}') d^3r'$$

$$E_{pot}^{inh}(\vec{r}) = \frac{E_{pot}^{hom}(\rho(\vec{r}))}{\rho(\vec{r})} \cdot \int_{volume} f_r(|\vec{r} - \vec{r}'|) \cdot \rho(\vec{r}') d^3r'$$

$$E_{pot}^{inh}(\vec{r}) = \frac{E_{pot}^{hom}(\rho(\vec{r}))}{\rho(\vec{r})} \cdot \overline{\rho}(\vec{r})$$

with
$$\overline{\rho}(\vec{r}) = \int_{volume} f_r(|\vec{r} - \vec{r}'|) \cdot \rho(\vec{r}') d^3 r'$$

Specializing to van der Waals fluid:

$$E_{pot}^{hom}(\rho(\vec{r})) = -a \cdot \rho(\vec{r}) \qquad \longrightarrow \qquad E_{pot}^{inh}(\vec{r}) = -a \cdot \overline{\rho}(\vec{r})$$

Theoretical

MethodResultsconvolution function

Employing the potential energy as internal energy (o.k. for isothermal systems) we can write the free energy:

$$A_m(\vec{r}) = U_m^{\text{hom}}(\rho(\vec{r})) \cdot \frac{\overline{\rho}(\vec{r})}{\rho(\vec{r})} - T \cdot S_m(\rho(\vec{r})) \quad \text{depends on } \overline{\rho}(\vec{r}) \text{ and on } \rho(\vec{r})$$

The chemical potential can then be shown to be:

$$\mu(\vec{r}) = -T \cdot S_m(\vec{r}) - T \cdot \rho(\vec{r}) \cdot \left(\frac{\partial S_m}{\partial \rho}(\vec{r})\right) + \left(\frac{\partial U_m^{\text{hom}}}{\partial \rho}(\vec{r})\right) \cdot \bar{\rho}(\vec{r}) + \int_{-\infty}^{\infty} f(\vec{r}' - \vec{r}) \cdot U_m^{\text{hom}}(\rho(\vec{r}')) d^3r'$$

Specializing to van der Waals fluid:

$$\mu(\vec{r}) = -TR \cdot \left(\ln\left(\frac{1}{\rho(\vec{r})} - b\right) - \frac{1}{1 - b\rho(\vec{r})} \right) - 2a \cdot \overline{\rho}(\vec{r})$$

For 2D and 3D simulation: Convolution function as sum of Gaussians

$$f(r) = f\left(|\vec{r} - \vec{r}'|\right) = \sum_{k} \alpha_{k} G_{k}\left(|\vec{r} - \vec{r}'|\right) \qquad \text{with} \qquad \sum_{k} \alpha_{k} = 1$$
where $G_{k}\left(|\vec{r} - \vec{r}'|\right) = G_{z,k}\left(|z - z'|\right) \cdot G_{y,k}\left(|y - y'|\right) \cdot G_{x,k}\left(|x - x'|\right)$

$$4\pi \int_{0}^{\infty} G_{k}(r) \cdot r^{2} d^{3}r = 1$$

Method

factorization

Factorization of Gaussians saves computer time

~ 1 order of magnitude for 2D, ~2 orders of magnitude for 3D

Theoretica

Method I factorization

$$\overline{\rho}(\overline{r}) = \int_{vol} f(|\overline{r} - \overline{r}'|) \cdot \rho(\overline{r}') \cdot d^{3}r'$$

$$= \sum_{k} \alpha_{k} \int_{vol} G_{k}(|\overline{r} - \overline{r}'|) \cdot \rho(\overline{r}') \cdot d^{3}r'$$

$$= \sum_{k} \alpha_{k} \cdot \int dz' \cdot G_{z,k}(|z - z'|) \cdot \int dy' \cdot G_{y,k}(|y - y'|) \cdot \int dx' \cdot G_{x,k}(|x - x'|) \cdot \rho(x', y', z')$$

$$\overline{\rho}_{k}(x, y', z')$$

$$\overline{\rho}_{k}(x, y, z')$$

$$\overline{\rho}_{k}(x, y, z)$$

$$\overline{\rho}(\vec{r}) = \sum_{k} \alpha_{k} \cdot \overline{\rho}_{k}(x', y', z')$$

Theoretica

MethodResultsfurther savings in computer time

Further savings in computer time:

•in region of mild inhomogeneity: Cahn Hilliard approximation square gradient method

$$\overline{\rho}(z) = \int_{-\infty}^{\infty} f_r(z - z') \cdot \rho(z') dz' \approx \rho(z) + m \cdot \frac{\partial^2 \rho}{\partial z^2}(z)$$
$$E_{pot}^{inh}(z) = \frac{E_{pot}^{hom}(\rho(z))}{\rho(z)} \cdot \overline{\rho}(z) = E_{pot}^{hom}(\rho(z)) \cdot \left(1 + \frac{m}{\rho(z)} \cdot \frac{\partial^2 \rho}{\partial z^2}(z)\right)$$

adaptive grid

large gain in computer time possible compared to grid of fixed resolution