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9 e Relevant nonequilibrium scales

— approximate periodicity — correlation length
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Quantum quench dynamics

e Phenomena
sudden change of a parameter in the A

Hamiltonian

— fort<O
x Hamiltonian %

« k-th eigenstate \%(0)>

— for¢t>0

* Hamiltonian 77

x time-dependent state (i=1)
Wi(1)) = exp (—it ) ¥}

— measured quantities

+ observable AA
A(t) = (Wi(t)|A[i (1))

* correlation function

Cap(ti,t2) = (Pr|A(t)B(t)|Py)

A(t) = exp(—it#)Aexp(it )

e EXxperimental realizations

ultracold atomic gases in optical lat-
tices

sudden change of parameters
through Feshbach resonance

weak couplings to dissipative de-
grees of freedem

coherent time evolution
+ Bose-Einstein condensates
x Spinor condensate

x 1D Bose system noneq. relax-

ation



e Theoretical questions x exponential (nonlocal operators)

— nature of the stationary state + power law (local operators)
x non-integrable models - thermal-
S
ization:: e Questions studied in this talk
x integrable models - uasi-
thergmalization? . — boundary and finite-size effects
— decay of correlations (space and — evolution towards a quasi-thermal

time) state



Model and numerical method

Quantum Ising chain e for t <0: transverse field: hy
| e for t > 0: transverse field: h
H = _5[ =1 070}, —h¥i, of] o .
equilibrium phase diagram:
e 0;°: Pauli-matrices at site ! e h<h.=1 ordered phase
e free boundary conditions e h > h,. disordered phase
quantum quench at r=0 e h=h., quantum critical point



Free fermion representation

1
H = Zq 1€ <n;nq_§>

n..n,: fermion operators
g,. energy of modes:
gV, (1) = —hdy(l)—-DP,(I+1),
g Py(l) = —Wy(l—1)—n¥(I)
spin operators:
Glx = AlBlAsz...Al_lBl_lAl ,
GIZ = —AlBl
with Clifford (related to Majorana) operators
Ai - Z(I) T’q +nCI)
L
B, = leq(i)(n;—nq)

time evolution: n, (t
from this follows

1) =Y [(AiAk) Ak + (AiBi):Bi]
%

tt&‘qnq . nq( ) lt&‘qn

Bi(t) = Y [(BiAk)Ar+ (BiBy):Bi]

k

with
(AR = Y cos(egt) Py (1) Pq(k) ,
(AiBi): = (BiAp) = i) sin(g)®y(1) ¥y (k) ,
(BiBy): = (1)Wq (k) .

Zcos(eqt)‘l’

The matrix-elements of time-dependent Clif-

ford operators, such as <'I{)(0)|A,(t)Ak(t)\%(0)>, in-

volve the ground-state expectation values:
CATHEARY " |BeBi %

= O, ) = —Oki

0 0 0 0 0 0
("B 8 = G (0 Bl ") = G
with

0
Gy ==L (e (1)
q



Local magnetization

o Definition: — according to Wick-theorem it is ex-
mi(t) = lim b(%(o)\ﬁf(t)l%(o)>b pressed as sum of products of two-
b—0, operator expectation values
0 .
here %), is the ground state of the — it is given in the form of a Pfaffian,
initial Hamiltonian in the presence of an the elements are in a 2[ x 2I triangle

external longitudinal field 5.

According to Yang it can be written as — it is expressed as the square-root of

the off-diagonal matrix-element: the determinant of an antisymmet-
0)) —x 0) ric matrix, with the elements of the
mi(t) = (%07 (1)) Pfaffian above the diagonal

here [ = ni|g®y is the first excited
) =M% e Behaviour in the initial state (¢ <0)

state.
e Calculation my(t < 0) = (1—h§)1/8, ho < he =1,
In the free-fermion representation: my(t <0) ~ L8 hy=h.=1,
—-1/2 _
mi(t) = (F AL (OB (1) .. A1 (0B ()AL (0)n] [ m(t <0)~L7'2  hg>he=1.



Relaxation of the magnetization profile
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Interpretation in terms of quasi-particles

During the quench quasi-particles are cre-
ated, which

e are emitted at every points of the chain

e travel with a constant speed, v=v(h,ho)

e are reflected at the boundaries.
Properties of quasi-particles

e originating at nearby region 0O(&) are
quantum entangled

others are incoherent

incoherent particles arriving at a refer-
ence point, [, cause relaxation of the lo-
cal observable (c.f. magnetization).

the same particle arriving at a reference
point, [, after reflection, induces quan-
tum correlations in time, signalized by
the reconstruction of the value of the
local observable.



Relaxation regimes

e Free relaxation regime r < =1/v

only incoherent quasi-particles pass
the reference point

the magnetization has an exponen-
tial decay

my(t) =m(t) = A(t)exp(—t/7)

A(t) oscillating prefactor
* h>h, and ho < h.: A(t) ~ cos(at +b)
A(t) changes sign

* otherwise: A(r) ~ [cos(at +b) +¢]
c>1, A(r) always positive

T relaxation (phase-coherence) time

quasi-thermalization for bulk sites

e Quasi-stationary regime: <t <T —1,
T =L)v,

two types of quasi-particles reach
the reference point

x type 1 passed [ only once at a
time t' <t

x type 2 passed it twice at two
times ¢ <t” <t with a reflection

these two types interfere, resulting
in a slow relaxation

the quasi-stationary magnetization
has an exponential dependence

my, (1) /my,(t2) ~ exp[—(L — L) /]

¢ correlation length
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Quasi-stationary limiting magnetization

Definition

m; = lim lim ml(L,t)

L—oot—o0

Surface magnetization

(1—r*)(1—hg)'/?
I—hhy

ho,h < 1,

otherwise.

nonequilibrium surface magnetization

exponents:

— B=1: hy<1l,h—1

— By=1/2: hg—1,h<1

e corrections to the quasi-stationary be-

haviour

hy < h,

ho > h,

h<hy | t 'cos(at+b)
h>hy | t3/%>cos(at +b)

L=3[cos(at +b) +c], ¢ > 1
t~'2[cos(at 4 b) + cL ™3/

e Bulk magnetization

m; >0,

m; =0,

ho,h <1,

otherwise.

12




Reconstruction regime: T -, <t<T e growth rate: t'(h,hp)

more and more type 2 quasi-particles _ _
reach the reference point e numerical observation:

7/7 =0.883+0.002.

incoherent spin flips in the past are pro-

gressively reversed ) o
e Approximate periodicity: r>T

for mono-disperse quasi-particles (veloc-
ity v) one would expect a T-periodicity: e typical speed: v(h,ho) =&/
ml(t) zml(T—t)

. h<1 ) V(h,h()) ~ ha(h7h0)7
observed behaviour: alhy) ~ 0.86—0.88,
my(t) =m(t) = B(t)exp(t/1') h>1| , v(hhy) = const.

13



Relaxation time: t(h,hg)

#(h) — %(1
e divergent at the following points x h>0 we consider | y*(h) = ;Eg; ;8
— stationary point: h=hg
~ (h— ho) 2 2 —E(1
t(h,ho) ~ (h—ho) «+ compare with | y*(h) = 2(0) 2(1)
— for small h 5 : ) ©)=c)
h)=_¢&(h)h
t(h,hy) ~h™! () =< (k)

exact result:

— for hy=0: E(h)=—1/log((1+1—h?)/)2)
t(h,hg=0) ~h ™3

e quench from a fully ordered state hy=0 e quench from partially ordered state hy >0
— to the disordered phase h>1 — define: #(h,ho) = h(h— ho)*T(h,h)
t(h>1,hg=0)=m/2,
independent of h. — ath=1: T(h=1,hy) = (1 —hg)/2.
— to the ordered phase h <1 . _
T(h,h() — 0) — h_31~7(h,h0 — O) — for h <1 we study:
— Az A7
* h— 0 we obtain Y¥(h, ho) = AT(h, ho) /AT(0,0)

T(h=0,hy=0) =371/2 with AZ(h,ho) = T(h,ho) — T(1,ho)

14
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Semiclassical

Quasiparticles (QP)

e wave packets: 1/]0)

o 1,0) — Yrarlk)
superposition of kinks at position k&
K =|++4+——-—)
aj < sin(k7r/L), k=1,...,L.

e energy of QP: g, =+/1+h*—2hcos(p)

Tt 3nm Srm
=4 +— +— ..., |k
¢ p L’ L ) L 9 ' | ‘ < 7r
dE hsi
e velocity of QP: v, = =2 = sin(p)
dp &

calculation

e QP-s are created at arbitrary position,

X0

e creation probability: f,(ho,h).

— if the system is thermalized at tem-
perature T
folhoh) = e=%/T

— in quantum relaxation
0 0
Folho,h) = (2 1,120

— for small h and hy (periodic chain):

olho, ) = 5 (ho — h)?sin’(p).

16



Relaxation of the magnetization

initial magnetization: m;(0) (ho < h.)

the magnetization for ¢ >0 is reduced due
to spin flips

— the local spin flips each time a Kink
passes the site [

— the local spin has its initial state at
t if even number of kinks has passed

calculation of the magnetization

— denote by | ¢(z) | the probability that

a given kink has passed odd times
before t the site [

the probability that a given set of n
kinks has passed (each odd times):

q"(1—g)F"
summing over all possibilities

my(t) = Y (-1)'q"(1- Q)Lnﬁin)g

— (1-29)" ~exp(—2q(1)L)

17



Calculation of (1)

e definition of g,(z)

refers to a pair of QPs with veloci-
ties v, and —v,

it is the probability, that the QP pair
pass the site [ together an odd num-
ber of times

the QP pairs emerge uniformly in
space

definition of g,(xo,t)

* gp(xo,t) =1, if the p Kink-pair of
initial position xy pass the site [
an odd number of times before ¢

* gp(x0,2) =0, otherwise

— relation with g¢,(¢):
1 (L
t)=— [ dx Xo,t
0,(0) =7 [ dvgylx.)
e relation with ¢(¢):
1 T
t)=— [ dpf,(ho,h)q,(t
a(t) = 3= [ dpfylho. g, (1)
e value of g,():
2v,t for r<n
Lqp(l‘) = 21 for H<t<mn
2—2vp,t for h<t<T,

(1)

with ty =1/v,, T,=L/v, and t, =T, —1,.

18



t<l/v

W ->c-£----
t

05 2vt/ L

[lv<t<2l/v t
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qp:2I/L z Y

0 2I-vt wvt

2l/v<t<T/2

t
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g 2l/L A

0 | L 0o | 2l

Left: Typical semi-classical contribution to the time dependence of the local magnetization
my(t). Full lines are quasi-particles or kinks moving with velocity v, through the chain. The
+ signs denote the sign of the spin at site /. Right: Sketch of the trajectories of kink pairs
that flip the spin at position [ exactly once for times r < T,/2. Kink pairs with initial position
xo outside the marked region either do not flip the spin at [ (since they do not reach the
position [ within time r) or they flip it twice. g, is the fraction of the marked intervals on the
t = 0-axis.
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Relaxation of the local magnetization, logm(t), at different positions in a L =256 chain with
free ends after a quench with parameters hy=0.0, h=0.2 and L=256. A Exact (free fermion
calculation). B Semi-classical prediction with the passing probability and the occupation
probability. C Comparison between exact and QP calculation for my(t) for L =256, I =128 for
a quench from hy=0 to h=0.1. D Semi-classical prediction using a thermal occupation
number probability with an effective temperature, T..
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Calculation of 7 and &

e free relaxation regime exact result for hy =0
t
ln[ml( ] = —t/7, _ _
m;(0) e reconstruction regime
1 2 [T for [=L/2, t,,=L/Viax,
T = %/o dep‘%| / /
in the small &,k limit: In [M] _ W2
1 h(h— h0)2 T 3 mL/z(tm/z) (4
- = —/ dpsin’ p 1 o) T n/6
T 27 0 - = = dp — d v,
) S p 0 p ¢ fpl 75l
= hlh—hy)>—=—
( 0) R¥/1

—he)2 _
e quasi-stationary regime (I;,l, < L) 1 _ hh—ho) 9vV3-8
In [mll (t)] _ _ll_lz . 9\/§7r 8 -
m, (1) g T = ~° _0.948
T T 8
1 2
g = E/O dpfp
: . e Summation of the contributions (Cal-
in the small h,hy limit: abrese et al)
1 (h=ho)? /ndpsinzp effective occupation rate:
é 27 0 .
_ (A=) fp—>§ln(1—2fp)

4
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Generalized Gibbs ensemble (GGE)

e Nonintegrable systems e Semi-classical theory
— Thermalization
. . . b ) — &n(p)
— stationary state is a Gibbs state fp( 0,h) =exp | —
Tete(p)

— one effective temperature: T

e Summation of the contributions

e Integrable systems

— Quasi-thermalization Fo (o, h) = 82 )
— stationary state is a GGE exp( Mo >+1
Tei(p)
— effective temperature for each classical kinks — free fermions
mode: Tu(p) Boltzmann distr. — Fermi distr.
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Conclusion

o effect of a free boundary on the quan-
tum relaxation of the boundary magne-
tization

— power-law relaxation
— non-thermal behavior

— finite limiting value

e relaxation in finite systems

— different relaxation regimes

x free relaxation
x quasi-stationary regime
x reconstruction regime

— approximate periodicity in time

e explanation in terms of quasi-particles

emerging at quench at each sites
travel with a speed, v,
reflected at the boundaries

by passing the reference point flip
the spin

characteristic time and length-scales

e possible relevance of the results for an-
other

integrable

nonintegrable

systems
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