# Quantum relaxation after a quench in systems with boundaries

Ferenc Iglói (Budapest)

in collaboration with

Heiko Rieger (Saarbrücken)

Phys. Rev. Lett. **106**, 035701 (2011), arXiv:1011.3664 Phys. Rev. B **84**, 165117 (2011), arXiv:1106.5248

Leipzig, 24th November 2011

# AGENDA

#### • Introduction

- nonequilibrium quantum processes
  - \* quench dynamics
  - \* adiabatic relaxation
- experimental examples
- theoretical questions
- challenging problems in this talk
  - \* effect of surfaces and finite sizes

- evolution towards a quasithermal state
- Model and the numerical method
  - quantum Ising chain
  - free fermion description
  - calculation of time-dependent observables
    - \* local magnetization
    - correlation and autocorrelation function

- Relaxation of the local magnetization - Relaxation regimes
  - free relaxation regime
  - quasi-stationary regime
  - reconstruction regime
  - approximate periodicity
- Interpretation in semiclassical theory
  - quasi-particle interpretation

- magnetization relaxation and reconstruction due to kinks
- thermal vs. quantum quasiparticle occupation
- Relevant nonequilibrium scales
  - correlation length
  - relaxation time
- Conclusions

#### **Quantum quench dynamics**

- Phenomena sudden change of a parameter in the Hamiltonian
  - for t < 0
    - \* Hamiltonian  $\mathscr{H}_0$
    - \* k-th eigenstate  $|\Psi_k^{(0)}
      angle$
  - for t > 0
    - \* Hamiltonian  ${\mathscr H}$
    - \* time-dependent state ( $\hbar = 1$ )

 $|\Psi_k(t)\rangle = \exp\left(-it\mathscr{H}\right)|\Psi_k^{(0)}\rangle$ 

- measured quantities
  - \* observable  $\hat{A}$  $A(t) = \langle \Psi_k(t) | \hat{A} | \Psi_k(t) \rangle$
  - \* correlation function

 $C_{AB}(t_1, t_2) = \langle \Psi_k | \hat{A}(t_1) \hat{B}(t_2) | \Psi_k \rangle$ 

 $\hat{A}(t) = \exp(-it\mathcal{H})\hat{A}\exp(it\mathcal{H})$ 

- Experimental realizations
  - ultracold atomic gases in optical lattices
  - sudden change of parameters through Feshbach resonance
  - weak couplings to dissipative degrees of freedem
  - coherent time evolution
    - \* Bose-Einstein condensates
    - \* spinor condensate
    - \* 1D Bose system noneq. relaxation

- Theoretical questions
  - nature of the stationary state
    - \* non-integrable models thermalization?
    - \* integrable models quasithermalization?
  - decay of correlations (space and time)

- \* exponential (nonlocal operators)
- \* power law (local operators)
- Questions studied in this talk
  - boundary and finite-size effects
  - evolution towards a quasi-thermal state

#### Model and numerical method

#### Quantum Ising chain

$$\mathscr{H} = -\frac{1}{2} \left[ \sum_{l=1}^{L-1} \sigma_l^x \sigma_{l+1}^x - h \sum_{l=1}^{L} \sigma_l^z \right]$$

- $\sigma_l^{x,z}$ : Pauli-matrices at site l
- free boundary conditions

quantum quench at t = 0

- for t < 0: transverse field:  $h_0$
- for  $t \ge 0$ : transverse field: h

equilibrium phase diagram:

- $h < h_c = 1$  ordered phase
- $h > h_c$  disordered phase
- $h = h_c$  quantum critical point

#### Free fermion representation

$$\mathscr{H} = \sum_{q=1}^{L} \varepsilon_q \left( \eta_q^{\dagger} \eta_q - \frac{1}{2} \right)$$

 $\eta_q^\dagger, \eta_q$ : fermion operators  $\varepsilon_q$ : energy of modes:

$$\begin{split} & \varepsilon_q \Psi_q(l) &= -h \Phi_q(l) - \Phi_q(l+1) , \\ & \varepsilon_q \Phi_q(l) &= - \Psi_q(l-1) - h \Psi_q(l) \end{split}$$

spin operators:

$$\begin{aligned} \boldsymbol{\sigma}_l^x &= A_1 B_1 A_2 B_2 \dots A_{l-1} B_{l-1} A_l , \\ \boldsymbol{\sigma}_l^z &= -A_l B_l \end{aligned}$$

$$egin{array}{rcl} A_i &=& \displaystyle{\sum_{q=1}^L \Phi_q(i)(\eta_q^++\eta_q)} \ B_i &=& \displaystyle{\sum_{q=1}^L \Psi_q(i)(\eta_q^+-\eta_q)} \end{array}$$

time evolution:  $\eta_q^+(t) = e^{itarepsilon_q}\eta_q^+$ ,  $\eta_q(t) = e^{-itarepsilon_q}\eta_q$  from this follows

$$A_{l}(t) = \sum_{k} \left[ \langle A_{l}A_{k} \rangle_{t}A_{k} + \langle A_{l}B_{k} \rangle_{t}B_{k} \right],$$
  
$$B_{l}(t) = \sum_{k} \left[ \langle B_{l}A_{k} \rangle_{t}A_{k} + \langle B_{l}B_{k} \rangle_{t}B_{k} \right],$$

with

$$\begin{array}{lll} \langle A_l A_k \rangle_t &=& \displaystyle \sum_q \cos(\varepsilon_q t) \Phi_q(l) \Phi_q(k) \;, \\ \langle A_l B_k \rangle_t &=& \displaystyle \langle B_k A_l \rangle_t = i \sum_q \sin(\varepsilon_q t) \Phi_q(l) \Psi_q(k) \;, \\ \langle B_l B_k \rangle_t &=& \displaystyle \sum_q \cos(\varepsilon_q t) \Psi_q(l) \Psi_q(k) \;. \end{array}$$

The matrix-elements of time-dependent Clifwith Clifford (related to Majorana) operators ford operators, such as  $\langle \Psi_0^{(0)} | A_l(t) A_k(t) | \Psi_0^{(0)} \rangle$ , involve the ground-state expectation values:

$$\langle \Psi_0^{(0)} | A_k A_l | \Psi_0^{(0)} \rangle = \delta_{k,l}, \ \langle \Psi_0^{(0)} | B_k B_l | \Psi_0^{(0)} \rangle = -\delta_{k,l} \Psi_0^{(0)} | A_k B_l | \Psi_0^{(0)} \rangle = -G_{kl}^{(0)}, \langle \Psi_0^{(0)} | B_k A_l | \Psi_0^{(0)} \rangle = G_{kl}^{(0)}.$$

with

$$G_{kl}^{(0)} = -\sum_{q} \Psi_{q}^{(0)}(k) \Phi_{q}^{(0)}(l)$$

6

#### Local magnetization

• Definition:

$$m_l(t) = \lim_{b \to 0_+} {}_b \langle \Psi_0^{(0)} | \sigma_l^x(t) | \Psi_0^{(0)} \rangle_b$$

here  $|\Psi_0^{(0)}\rangle_b$  is the ground state of the initial Hamiltonian in the presence of an external longitudinal field *b*.

According to Yang it can be written as the off-diagonal matrix-element:

$$m_l(t) = \langle \Psi_0^{(0)} | \sigma_l^x(t) | \Psi_1^{(0)} \rangle$$

here  $|\Psi_1^{(0)}\rangle=\eta_1^\dagger|\Psi_0^{(0)}\rangle$  is the first excited state.

#### • Calculation

In the free-fermion representation:

$$m_l(t) = \langle \Psi_0^{(0)} | A_1(t) B_1(t) \dots A_{l-1}(t) B_{l-1}(t) A_l(t) \eta_1^{\dagger} | \Psi_0^{(0)} \rangle$$

- according to Wick-theorem it is expressed as sum of products of twooperator expectation values
- it is given in the form of a Pfaffian, the elements are in a  $2l \times 2l$  triangle
- it is expressed as the square-root of the determinant of an antisymmetric matrix, with the elements of the Pfaffian above the diagonal
- Behaviour in the initial state (t < 0)

$$\begin{split} m_l(t < 0) &= \left(1 - h_0^2\right)^{1/8}, \quad h_0 < h_c = 1, \\ m_l(t < 0) \sim L^{-1/8}, \quad h_0 = h_c = 1, \\ m_l(t < 0) \sim L^{-1/2}, \quad h_0 > h_c = 1. \end{split}$$

#### **Relaxation of the magnetization profile**



a)  $h_0 = 0.0$  and h = 0.5 (**O**  $\rightarrow$  **O**) b)  $h_0 = 0.5$  and h = 1.5 (**O**  $\rightarrow$  **D**) c)  $h_0 = 1.5$  and h = 0.5 (**D**  $\rightarrow$  **O**)d)  $h_0 = 1.5$  and h = 2.0 (**D**  $\rightarrow$  **D**).

#### Interpretation in terms of quasi-particles

# During the quench quasi-particles are created, which

- are emitted at every points of the chain
- travel with a constant speed,  $v = v(h, h_0)$
- are reflected at the boundaries.

#### **Properties of quasi-particles**

- originating at nearby region  $O(\xi)$  are quantum entangled

- others are incoherent
- incoherent particles arriving at a reference point, *l*, cause relaxation of the local observable (c.f. magnetization).
- the same particle arriving at a reference point, *l*, after reflection, induces quantum correlations in time, signalized by the reconstruction of the value of the local observable.

#### **Relaxation regimes**

- Free relaxation regime  $t < t_l = l/v$ 
  - only incoherent quasi-particles pass the reference point
  - the magnetization has an exponential decay

$$m_l(t) \equiv m(t) \approx A(t) \exp(-t/\tau)$$

- A(t) oscillating prefactor
  - \*  $h > h_c$  and  $h_0 < h_c$ :  $A(t) \sim \cos(at+b)$ A(t) changes sign
  - \* otherwise:  $A(t) \sim [\cos(at+b)+c]$ c > 1, A(t) always positive
- $\tau$  relaxation (phase-coherence) time
- quasi-thermalization for bulk sites

- Quasi-stationary regime:  $t_l < t < T t_l$ , T = L/v,
  - two types of quasi-particles reach the reference point
    - \* type 1 passed l only once at a time t' < t
    - \* type 2 passed it twice at two times t' < t'' < t with a reflection
  - these two types interfere, resulting in a slow relaxation
  - the quasi-stationary magnetization has an exponential dependence

 $m_{l_1}(t_1)/m_{l_2}(t_2) \approx \exp\left[-(l_1-l_2)/\xi\right]$ 

-  $|\xi$  correlation length

#### **Relaxation of the magnetization profile**



a)  $h_0 = 0.0$  and h = 0.5 (**O**  $\rightarrow$  **O**) b)  $h_0 = 0.5$  and h = 1.5 (**O**  $\rightarrow$  **D**) c)  $h_0 = 1.5$  and h = 0.5 (**D**  $\rightarrow$  **O**)d)  $h_0 = 1.5$  and h = 2.0 (**D**  $\rightarrow$  **D**).

11

#### **Quasi-stationary limiting magnetization**

• Definition

 $\overline{m}_l = \lim_{L \to \infty} \lim_{t \to \infty} m_l(L, t)$ 

• Surface magnetization

$$\overline{m}_1 = \frac{(1-h^2)(1-h_0^2)^{1/2}}{1-hh_0}, \quad h_0, h < 1,$$
  
$$\overline{m}_1 = 0, \quad \text{otherwise.}$$

• nonequilibrium surface magnetization exponents:

**-** 
$$\beta_s = 1$$
:  $h_0 < 1, h \to 1$ 

- $\beta_s = 1/2: h_0 \to 1, h < 1$
- corrections to the quasi-stationary behaviour

|           | $h_0 < h_c$          | $h_0 > h_c$                      |
|-----------|----------------------|----------------------------------|
| $h < h_0$ | $t^{-1}\cos(at+b)$   | $L^{-3/2}[\cos(at+b)+c], \ c>1$  |
| $h > h_0$ | $t^{-3/2}\cos(at+b)$ | $t^{-1/2}[\cos(at+b)+cL^{-3/2}]$ |

• Bulk magnetization

 $\overline{m}_l > 0, \quad h_0, h < 1,$  $\overline{m}_l = 0, \quad \text{otherwise.}$ 

- **Reconstruction regime:**  $T t_l < t < T$
- more and more type 2 quasi-particles reach the reference point
- incoherent spin flips in the past are progressively reversed
- for mono-disperse quasi-particles (velocity v) one would expect a T-periodicity: • typical speed:  $v(h,h_0) = \xi/\tau$  $m_l(t) = m_l(T-t)$
- observed behaviour:

$$m_l(t) \equiv m(t) \approx B(t) \exp(t/\tau')$$

- growth rate:  $\tau'(h,h_0)$
- numerical observation:  $\tau/\tau' = 0.883 \pm 0.002.$
- Approximate periodicity: t > T

$$\begin{array}{ccc} \hline h < 1 & , & v(h,h_0) \approx ha(h,h_0), \\ a(h,h_0) & \approx & 0.86 - 0.88, \\ \hline h > 1 & , & v(h,h_0) \approx {\rm const.} \end{array}$$

#### **Relaxation time:** $\tau(h,h_0)$

- divergent at the following points
  - stationary point:  $h = h_0$

$$\tau(h,h_0) \sim (h-h_0)^{-2}$$

- for small h

$$\tau(h,h_0) \sim h^{-1}$$

- for  $h_0 = 0$ :

$$au(h,h_0=0)\sim h^{-3}$$

- quench from a fully ordered state  $h_0 = 0$ 
  - to the disordered phase  $h \ge 1$   $\tau(h \ge 1, h_0 = 0) = \pi/2$ , independent of h.
  - to the ordered phase h < 1 $\tau(h, h_0 = 0) = h^{-3} \tilde{\tau}(h, h_0 = 0)$ 
    - \*  $h \rightarrow 0$  we obtain  $ilde{ au}(h=0,h_0=0)=3\pi/2$

\* h > 0 we consider  $y^{\tau}(h) = \frac{\tilde{\tau}(h) - \tilde{\tau}(1)}{\tilde{\tau}(0) - \tilde{\tau}(1)}$ 

\* compare with 
$$y^{\xi}(h) = \frac{\tilde{\xi}(h) - \tilde{\xi}(1)}{\tilde{\xi}(0) - \tilde{\xi}(1)}$$
$$\tilde{\xi}(h) = \xi(h)h^{2}$$
exact result:
$$\xi(h) = -1/\log((1 + \sqrt{1 - h^{2}})/2)$$

- quench from partially ordered state  $h_0 > 0$ 
  - define:  $\tilde{\tau}(h,h_0) = h(h-h_0)^2 \tau(h,h_0)$

- at 
$$h = 1$$
:  $\tilde{\tau}(h = 1, h_0) = \pi(1 - h_0)/2$ .

- for 
$$h < 1$$
 we study:  

$$\boxed{\overline{y}^{\tau}(h,h_0) = \Delta \tilde{\tau}(h,h_0) / \Delta \tilde{\tau}(0,0)}$$
with  $\Delta \tilde{\tau}(h,h_0) = \tilde{\tau}(h,h_0) - \tilde{\tau}(1,h_0)$ 

#### **Ratios of the relaxation times**



#### **Semiclassical calculation**

#### Quasiparticles (QP)

- wave packets:  $\eta_p^\dagger |0
  angle$
- $\eta_p^+|0\rangle \rightarrow \sum_k a_k |k\rangle$ superposition of kinks at position k $|k\rangle = |++\dots+-\dots-\rangle$  $a_k \propto \sin(k\pi/L), \ k = 1,\dots,L.$

• energy of QP: 
$$arepsilon_p = \sqrt{1+h^2-2h\cos(p)}$$

• 
$$p = \pm \frac{\pi}{L}, \pm \frac{3\pi}{L}, \pm \frac{5\pi}{L}, \dots, |k| < \pi$$

• velocity of QP: 
$$v_p = \frac{\partial \varepsilon_p}{\partial p} = \frac{h \sin(p)}{\varepsilon_p}$$

- QP-s are created at arbitrary position, x<sub>0</sub>,
- creation probability:  $f_p(h_0,h)$ .
  - if the system is thermalized at temperature T  $f_p(h_0,h) = e^{-\varepsilon_p/T}$
  - in quantum relaxation  $f_p(h_0,h) = \langle \Psi_0^{(0)} | \eta_p^+ \eta_p | \Psi_0^{(0)} 
    angle$
  - for small *h* and *h*<sub>0</sub> (periodic chain):  $f_p(h_0,h) = \frac{1}{4}(h_0 - h)^2 \sin^2(p).$

#### **Relaxation of the magnetization**

- initial magnetization:  $m_l(0)$  ( $h_0 < h_c$ )
- the magnetization for t > 0 is reduced due to spin flips
  - the local spin flips each time a kink passes the site l
  - the local spin has its initial state at
     t if even number of kinks has passed
- calculation of the magnetization

- denote by q(t) the probability that a given kink has passed odd times before *t* the site *l*
- the probability that a given set of n kinks has passed (each odd times):  $q^n(1-q)^{L-n}$
- summing over all possibilities

$$\frac{m_l(t)}{m_l(0)} = \sum_{n=0}^{L} (-1)^n q^n (1-q)^{L-n} \frac{L!}{n!(L-n)!}$$
$$= (1-2q)^L \approx \exp(-2q(t)L)$$

#### Calculation of q(t)

- definition of  $q_p(t)$ 
  - refers to a pair of QPs with velocities  $v_p$  and  $-v_p$
  - it is the probability, that the QP pair pass the site *l* together an odd number of times
  - the QP pairs emerge uniformly in space
  - definition of  $q_p(x_0,t)$ 
    - \*  $q_p(x_0,t) = 1$ , if the *p* kink-pair of initial position  $x_0$  pass the site *l* an odd number of times before *t*
    - \*  $q_p(x_0,t) = 0$ , otherwise

- relation with  $q_p(t)$ :

$$q_p(t) = \frac{1}{L} \int_0^L dx_0 q_p(x_0, t)$$

• relation with q(t):

$$q(t) = \frac{1}{2\pi} \int_0^{\pi} dp f_p(h_0, h) q_p(t)$$

• value of  $q_p(t)$ :

$$Lq_{p}(t) = \begin{cases} 2v_{p}t & \text{for} & t \leq t_{1} \\ 2l & \text{for} & t_{1} \leq t \leq t_{2} \\ 2 - 2v_{p}t & \text{for} & t_{2} \leq t < T_{p} \\ \end{cases}$$
(1)

with  $t_1 = l/v_p$ ,  $T_p = L/v_p$  and  $t_2 = T_p - t_1$ .



**Left:** Typical semi-classical contribution to the time dependence of the local magnetization  $m_l(t)$ . Full lines are quasi-particles or kinks moving with velocity  $v_p$  through the chain. The  $\pm$  signs denote the sign of the spin at site l. **Right:** Sketch of the trajectories of kink pairs that flip the spin at position l exactly once for times  $t < T_p/2$ . Kink pairs with initial position  $x_0$  outside the marked region either do not flip the spin at l (since they do not reach the position l within time t) or they flip it twice.  $q_p$  is the fraction of the marked intervals on the t = 0-axis.



Relaxation of the local magnetization,  $\log m_l(t)$ , at different positions in a L = 256 chain with free ends after a quench with parameters  $h_0 = 0.0$ , h = 0.2 and L = 256. A Exact (free fermion calculation). B Semi-classical prediction with the passing probability and the occupation probability. C Comparison between exact and QP calculation for  $m_l(t)$  for L = 256, l = 128 for a quench from  $h_0 = 0$  to h = 0.1. D Semi-classical prediction using a thermal occupation number probability with an effective temperature,  $T_{\text{eff}}$ .

# Calculation of $\tau$ and $\xi$

• free relaxation regime

$$\ln \left[ \frac{m_l(t)}{m_l(0)} \right] = -t/\tau,$$
  
$$\frac{1}{\tau} = \frac{2}{\pi} \int_0^{\pi} dp f_p |\mathcal{V}_p|$$

in the small  $h, h_0$  limit:

$$\frac{1}{\tau} \approx \frac{h(h-h_0)^2}{2\pi} \int_0^{\pi} dp \sin^3 p$$
$$= h(h-h_0)^2 \frac{2}{3\pi}$$

"numerically exact" result

• quasi-stationary regime  $(l_1, l_2 \ll L)$ 

$$\ln \left[\frac{m_{l_1}(t)}{m_{l_2}(t)}\right] = -\frac{l_1 - l_2}{\xi},$$
$$\frac{1}{\xi} = \frac{2}{\pi} \int_0^{\pi} \mathrm{d}p f_p$$

in the small  $h, h_0$  limit:

$$\frac{1}{\xi} \approx \frac{(h-h_0)^2}{2\pi} \int_0^{\pi} \mathrm{d}p \sin^2 p$$
$$= \frac{(h-h_0)^2}{4}$$

exact result for  $h_0 = 0$ 

• reconstruction regime for l = L/2,  $t_m = L/v_{max}$ ,

$$\ln \left[ \frac{m_{L/2}(t_m)}{m_{L/2}(t_m/2)} \right] = \frac{t_m/2}{\tau'},$$

$$\frac{1}{\tau'} = \frac{2}{\pi} \left\{ \int_{\pi/6}^{\pi} dp - \int_{0}^{\pi/6} dp \right\} f_p |\mathscr{V}_p|$$

in the small  $h, h_0$  limit:

$$\frac{1}{\tau'} = \frac{h(h-h_0)^2}{\pi} \frac{9\sqrt{3}-8}{12}$$
$$\frac{\tau}{\tau'} = \frac{9\sqrt{3}-8}{8} = 0.948$$

 Summation of the contributions (Calabrese et al) effective occupation rate:

$$f_p \to \frac{1}{2}\ln(1-2f_p)$$

### Generalized Gibbs ensemble (GGE)

- Nonintegrable systems
  - Thermalization
  - stationary state is a Gibbs state
  - one effective temperature:  $T_{\rm eff}$
- Integrable systems
  - Quasi-thermalization
  - stationary state is a GGE
  - effective temperature for each mode:  $T_{\rm eff}(p)$

$$f_p(h_0,h) = \exp\left(-\frac{\varepsilon_h(p)}{T_{\text{eff}}(p)}\right)$$

• Summation of the contributions

$$f_p(h_0, h) = \frac{1}{\exp\left(\frac{\varepsilon_h(p)}{T_{\text{eff}}(p)}\right) + 1}$$

classical kinks  $\rightarrow$  free fermions Boltzmann distr.  $\rightarrow$  Fermi distr.

# Conclusion

- effect of a free boundary on the quantum relaxation of the boundary magnetization
  - power-law relaxation
  - non-thermal behavior
  - finite limiting value
- relaxation in finite systems
  - different relaxation regimes
    - \* free relaxation
    - \* quasi-stationary regime
    - \* reconstruction regime
  - approximate periodicity in time

- explanation in terms of quasi-particles
  - emerging at quench at each sites
  - travel with a speed,  $v_p$
  - reflected at the boundaries
  - by passing the reference point flip the spin
  - characteristic time and length-scales
- possible relevance of the results for another
  - integrable
  - nonintegrable
  - systems