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AGENDA

• Introduction

– nonequilibrium quantum pro-
cesses

∗ quench dynamics

∗ adiabatic relaxation

– experimental examples

– theoretical questions

– challenging problems in this
talk

∗ effect of surfaces and finite
sizes

∗ evolution towards a quasi-
thermal state

• Model and the numerical method

– quantum Ising chain

– free fermion description

– calculation of time-dependent
observables

∗ local magnetization

∗ correlation and autocorrela-
tion function

2



• Relaxation of the local magneti-
zation - Relaxation regimes

– free relaxation regime

– quasi-stationary regime

– reconstruction regime

– approximate periodicity

• Interpretation in semiclassical
theory

– quasi-particle interpretation

– magnetization relaxation and
reconstruction due to kinks

– thermal vs. quantum quasi-
particle occupation

• Relevant nonequilibrium scales

– correlation length

– relaxation time

• Conclusions
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Quantum quench dynamics

• Phenomena
sudden change of a parameter in the
Hamiltonian

– for t < 0

∗ Hamiltonian H0

∗ k-th eigenstate |Ψ (0)
k 〉

– for t > 0

∗ Hamiltonian H

∗ time-dependent state (h̄ = 1)

|Ψk(t)〉= exp(−itH ) |Ψ(0)
k 〉

– measured quantities

∗ observable Â
A(t) = 〈Ψk(t)|Â|Ψk(t)〉

∗ correlation function

CAB(t1, t2) = 〈Ψk|Â(t1)B̂(t2)|Ψk〉

Â(t) = exp(−itH )Âexp(itH )

• Experimental realizations

– ultracold atomic gases in optical lat-
tices

– sudden change of parameters
through Feshbach resonance

– weak couplings to dissipative de-
grees of freedem

– coherent time evolution

∗ Bose-Einstein condensates

∗ spinor condensate

∗ 1D Bose system noneq. relax-
ation
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• Theoretical questions

– nature of the stationary state

∗ non-integrable models - thermal-
ization?

∗ integrable models - quasi-
thermalization?

– decay of correlations (space and
time)

∗ exponential (nonlocal operators)

∗ power law (local operators)

• Questions studied in this talk

– boundary and finite-size effects

– evolution towards a quasi-thermal
state



Model and numerical method

Quantum Ising chain

H =−1
2
[
∑

L−1
l=1 σ x

l σ x
l+1−h∑

L
l=1 σ

z
l

]
• σ

x,z
l : Pauli-matrices at site l

• free boundary conditions

quantum quench at t = 0

• for t < 0: transverse field: h0

• for t ≥ 0: transverse field: h

equilibrium phase diagram:

• h < hc = 1 ordered phase

• h > hc disordered phase

• h = hc quantum critical point
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Free fermion representation

H = ∑
L
q=1 εq

(
η†

q ηq−
1
2

)
η†

q ,ηq: fermion operators
εq: energy of modes:

εqΨq(l) = −hΦq(l)−Φq(l +1) ,

εqΦq(l) = −Ψq(l−1)−hΨq(l)
spin operators:

σ
x
l = A1B1A2B2 . . .Al−1Bl−1Al ,

σ
z
l = −AlBl

with Clifford (related to Majorana) operators

Ai =
L

∑
q=1

Φq(i)(η+
q +ηq) ,

Bi =
L

∑
q=1

Ψq(i)(η+
q −ηq)

time evolution: η+
q (t) = eitεqη+

q , ηq(t) = e−itεqηq
from this follows

Al(t) = ∑
k

[〈AlAk〉tAk + 〈AlBk〉tBk] ,

Bl(t) = ∑
k

[〈BlAk〉tAk + 〈BlBk〉tBk] ,

with

〈AlAk〉t = ∑
q

cos(εqt)Φq(l)Φq(k) ,

〈AlBk〉t = 〈BkAl〉t = i∑
q

sin(εqt)Φq(l)Ψq(k) ,

〈BlBk〉t = ∑
q

cos(εqt)Ψq(l)Ψq(k) .

The matrix-elements of time-dependent Clif-

ford operators, such as 〈Ψ (0)
0 |Al(t)Ak(t)|Ψ (0)

0 〉, in-

volve the ground-state expectation values:

〈Ψ (0)
0 |AkAl|Ψ (0)

0 〉= δk,l, 〈Ψ (0)
0 |BkBl|Ψ (0)

0 〉=−δk,l

〈Ψ (0)
0 |AkBl|Ψ (0)

0 〉=−G(0)
kl ,〈Ψ (0)

0 |BkAl|Ψ (0)
0 〉= G(0)

kl .

with

G(0)
kl =−∑

q
Ψ

(0)
q (k)Φ(0)

q (l)

.
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Local magnetization

• Definition:

ml(t) = lim
b→0+

b〈Ψ (0)
0 |σ

x
l (t)|Ψ (0)

0 〉b

here |Ψ (0)
0 〉b is the ground state of the

initial Hamiltonian in the presence of an
external longitudinal field b.

According to Yang it can be written as
the off-diagonal matrix-element:

ml(t) = 〈Ψ (0)
0 |σ

x
l (t)|Ψ (0)

1 〉

here |Ψ (0)
1 〉 = η

†
1 |Ψ

(0)
0 〉 is the first excited

state.

• Calculation

In the free-fermion representation:

ml(t)= 〈Ψ (0)
0 |A1(t)B1(t) . . .Al−1(t)Bl−1(t)Al(t)η†

1 |Ψ
(0)

0 〉

– according to Wick-theorem it is ex-
pressed as sum of products of two-
operator expectation values

– it is given in the form of a Pfaffian,
the elements are in a 2l×2l triangle

– it is expressed as the square-root of
the determinant of an antisymmet-
ric matrix, with the elements of the
Pfaffian above the diagonal

• Behaviour in the initial state (t < 0)

ml(t < 0) =
(
1−h2

0
)1/8

, h0 < hc = 1,

ml(t < 0)∼ L−1/8, h0 = hc = 1,

ml(t < 0)∼ L−1/2, h0 > hc = 1.
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Relaxation of the magnetization profile
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Interpretation in terms of quasi-particles

During the quench quasi-particles are cre-
ated, which

• are emitted at every points of the chain

• travel with a constant speed, v = v(h,h0)

• are reflected at the boundaries.

Properties of quasi-particles

• originating at nearby region O(ξ ) are
quantum entangled

• others are incoherent

• incoherent particles arriving at a refer-

ence point, l, cause relaxation of the lo-

cal observable (c.f. magnetization).

• the same particle arriving at a reference

point, l, after reflection, induces quan-

tum correlations in time, signalized by

the reconstruction of the value of the

local observable.
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Relaxation regimes

• Free relaxation regime t < tl = l/v

– only incoherent quasi-particles pass
the reference point

– the magnetization has an exponen-
tial decay

ml(t)≡ m(t)≈ A(t)exp(−t/τ)

– A(t) oscillating prefactor

∗ h > hc and h0 < hc: A(t)∼ cos(at +b)
A(t) changes sign

∗ otherwise: A(t)∼ [cos(at +b)+ c]
c > 1, A(t) always positive

– τ relaxation (phase-coherence) time

– quasi-thermalization for bulk sites

• Quasi-stationary regime: tl < t < T − tl,
T = L/v,

– two types of quasi-particles reach
the reference point

∗ type 1 passed l only once at a
time t ′ < t

∗ type 2 passed it twice at two
times t ′ < t ′′ < t with a reflection

– these two types interfere, resulting
in a slow relaxation

– the quasi-stationary magnetization
has an exponential dependence

ml1(t1)/ml2(t2)≈ exp [−(l1− l2)/ξ ]

– ξ correlation length
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Relaxation of the magnetization profile
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Quasi-stationary limiting magnetization

• Definition

ml = lim
L→∞

lim
t→∞

ml(L, t)

• Surface magnetization

m1 =
(1−h2)(1−h2

0)
1/2

1−hh0
, h0,h < 1,

m1 = 0, otherwise.

• nonequilibrium surface magnetization
exponents:

– βs = 1: h0 < 1,h→ 1

– βs = 1/2: h0→ 1,h < 1

• corrections to the quasi-stationary be-

haviour
h0 < hc h0 > hc

h < h0 t−1 cos(at +b) L−3/2[cos(at +b)+ c], c > 1
h > h0 t−3/2 cos(at +b) t−1/2[cos(at +b)+ cL−3/2]

• Bulk magnetization

ml > 0, h0,h < 1,

ml = 0, otherwise.
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• Reconstruction regime: T − tl < t < T

• more and more type 2 quasi-particles
reach the reference point

• incoherent spin flips in the past are pro-
gressively reversed

• for mono-disperse quasi-particles (veloc-
ity v) one would expect a T -periodicity:
ml(t) = ml(T − t)

• observed behaviour:

ml(t)≡ m(t)≈ B(t)exp(t/τ ′)

• growth rate: τ ′(h,h0)

• numerical observation:

τ/τ ′ = 0.883±0.002.

• Approximate periodicity: t > T

• typical speed: v(h,h0) = ξ/τ

h < 1 , v(h,h0)≈ ha(h,h0),

a(h,h0) ≈ 0.86−0.88,

h > 1 , v(h,h0)≈ const.
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Relaxation time: τ(h,h0)
• divergent at the following points

– stationary point: h = h0

τ(h,h0)∼ (h−h0)−2

– for small h

τ(h,h0)∼ h−1

– for h0 = 0:

τ(h,h0 = 0)∼ h−3

• quench from a fully ordered state h0 = 0

– to the disordered phase h≥ 1
τ(h≥ 1,h0 = 0) = π/2,
independent of h.

– to the ordered phase h < 1
τ(h,h0 = 0) = h−3τ̃(h,h0 = 0)

∗ h→ 0 we obtain
τ̃(h = 0,h0 = 0) = 3π/2

∗ h > 0 we consider yτ(h) =
τ̃(h)− τ̃(1)
τ̃(0)− τ̃(1)

∗ compare with yξ (h) =
ξ̃ (h)− ξ̃ (1)
ξ̃ (0)− ξ̃ (1)

ξ̃ (h) = ξ (h)h2

exact result:

ξ (h) =−1/ log((1+
√

1−h2)/2)

• quench from partially ordered state h0 > 0

– define: τ̃(h,h0) = h(h−h0)2τ(h,h0)

– at h = 1: τ̃(h = 1,h0) = π(1−h0)/2.

– for h < 1 we study:

yτ(h,h0) = ∆τ̃(h,h0)/∆τ̃(0,0)

with ∆τ̃(h,h0) = τ̃(h,h0)− τ̃(1,h0)
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Ratios of the relaxation times
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Semiclassical calculation

Quasiparticles (QP)

• wave packets: η†
p|0〉

• η+
p |0〉 → ∑k ak|k〉

superposition of kinks at position k
|k〉= |++ · · ·+−−·· ·−〉
ak ∝ sin(kπ/L), k = 1, . . . ,L.

• energy of QP: εp =
√

1+h2−2hcos(p)

• p =±π

L
,±3π

L
,±5π

L
, . . . , |k|< π

• velocity of QP: vp =
∂εp

∂ p
=

hsin(p)
εp

• QP-s are created at arbitrary position,

x0,

• creation probability: fp(h0,h).

– if the system is thermalized at tem-

perature T

fp(h0,h) = e−εp/T

– in quantum relaxation

fp(h0,h) = 〈Ψ(0)
0 |η+

p ηp|Ψ(0)
0 〉

– for small h and h0 (periodic chain):

fp(h0,h) =
1
4
(h0−h)2 sin2(p).
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Relaxation of the magnetization

• initial magnetization: ml(0) (h0 < hc)

• the magnetization for t > 0 is reduced due
to spin flips

– the local spin flips each time a kink
passes the site l

– the local spin has its initial state at
t if even number of kinks has passed

• calculation of the magnetization

– denote by q(t) the probability that

a given kink has passed odd times
before t the site l

– the probability that a given set of n
kinks has passed (each odd times):
qn(1−q)L−n

– summing over all possibilities

ml(t)
ml(0)

=
L

∑
n=0

(−1)nqn(1−q)L−n L!
n!(L−n)!

= (1−2q)L ≈ exp(−2q(t)L)
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Calculation of q(t)
• definition of qp(t)

– refers to a pair of QPs with veloci-
ties vp and −vp

– it is the probability, that the QP pair
pass the site l together an odd num-
ber of times

– the QP pairs emerge uniformly in
space

– definition of qp(x0, t)

∗ qp(x0, t) = 1, if the p kink-pair of
initial position x0 pass the site l
an odd number of times before t

∗ qp(x0, t) = 0, otherwise

– relation with qp(t):

qp(t) =
1
L

∫ L

0
dx0 qp(x0, t)

• relation with q(t):

q(t) =
1

2π

∫
π

0
d p fp(h0,h)qp(t)

• value of qp(t):

Lqp(t) =

{
2vpt for t ≤ t1
2l for t1 ≤ t ≤ t2
2−2vpt for t2 ≤ t < Tp

(1)
with t1 = l/vp, Tp = L/vp and t2 = Tp− t1.
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Left: Typical semi-classical contribution to the time dependence of the local magnetization
ml(t). Full lines are quasi-particles or kinks moving with velocity vp through the chain. The
± signs denote the sign of the spin at site l. Right: Sketch of the trajectories of kink pairs
that flip the spin at position l exactly once for times t < Tp/2. Kink pairs with initial position
x0 outside the marked region either do not flip the spin at l (since they do not reach the
position l within time t) or they flip it twice. qp is the fraction of the marked intervals on the
t = 0-axis.
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Relaxation of the local magnetization, logml(t), at different positions in a L = 256 chain with
free ends after a quench with parameters h0 = 0.0, h = 0.2 and L = 256. A Exact (free fermion

calculation). B Semi-classical prediction with the passing probability and the occupation
probability. C Comparison between exact and QP calculation for ml(t) for L = 256, l = 128 for

a quench from h0 = 0 to h = 0.1. D Semi-classical prediction using a thermal occupation
number probability with an effective temperature, Teff.

20



Calculation of τ and ξ

• free relaxation regime

ln
[

ml(t)
ml(0)

]
= −t/τ,

1
τ

=
2
π

∫
π

0
dp fp|Vp|

in the small h,h0 limit:

1
τ
≈ h(h−h0)2

2π

∫
π

0
dpsin3 p

= h(h−h0)2 2
3π

“numerically exact” result

• quasi-stationary regime (l1, l2� L)

ln
[

ml1(t)
ml2(t)

]
= − l1− l2

ξ
,

1
ξ

=
2
π

∫
π

0
dp fp

in the small h,h0 limit:

1
ξ
≈ (h−h0)2

2π

∫
π

0
dpsin2 p

=
(h−h0)2

4

exact result for h0 = 0

• reconstruction regime
for l = L/2, tm = L/vmax,

ln
[

mL/2(tm)
mL/2(tm/2)

]
=

tm/2
τ ′

,

1
τ ′

=
2
π

{∫
π

π/6
dp−

∫
π/6

0
dp
}

fp|Vp|

in the small h,h0 limit:

1
τ ′

=
h(h−h0)2

π

9
√

3−8
12

τ

τ ′
=

9
√

3−8
8

= 0.948

• Summation of the contributions (Cal-
abrese et al)
effective occupation rate:

fp→
1
2

ln(1−2 fp)
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Generalized Gibbs ensemble (GGE)

• Nonintegrable systems

– Thermalization

– stationary state is a Gibbs state

– one effective temperature: Teff

• Integrable systems

– Quasi-thermalization

– stationary state is a GGE

– effective temperature for each
mode: Teff(p)

• Semi-classical theory

fp(h0,h) = exp
(
− εh(p)

Teff(p)

)

• Summation of the contributions

fp(h0,h) =
1

exp
(

εh(p)
Teff(p)

)
+1

classical kinks → free fermions
Boltzmann distr. → Fermi distr.
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Conclusion

• effect of a free boundary on the quan-
tum relaxation of the boundary magne-
tization

– power-law relaxation

– non-thermal behavior

– finite limiting value

• relaxation in finite systems

– different relaxation regimes

∗ free relaxation

∗ quasi-stationary regime

∗ reconstruction regime

– approximate periodicity in time

• explanation in terms of quasi-particles

– emerging at quench at each sites

– travel with a speed, vp

– reflected at the boundaries

– by passing the reference point flip
the spin

– characteristic time and length-scales

• possible relevance of the results for an-
other

– integrable

– nonintegrable

systems
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