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Three-dimensional semi-infinite Ising model, reduced Hamiltonian
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Phase diagram for h = h1 = 0
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◮ A: Bulk and surface are disordered

◮ B: Bulk is disordered, surface is ordered

◮ C: Bulk and surface are ordered

◮ From A to C: Ordinary transition

◮ From B to C: Extraordinary transition

◮ From A to B: Surface transition

◮ SP: Special point (is a tricritical point)

◮ h1 6= 0 → extraordinary transition



Surface critical exponents govern the behaviour of surface quantities
in the neighbourhood of the critical point:

m1 ≃ tβ1 χ1 =
∂m1

∂h
≃ t−γ1 χ1,1 =

∂m1

∂h1
≃ t−γ1,1

where m1 is the magnetisation at the surface; Surface specific heat

Cs ≃ t−αs

These exponents can be expressed in terms of the RG-exponents

At the ordinary transition: In addition to the relevant bulk
RG-exponents yt , yh the surface RG-exponent yh1 is relevant.

At the special point in addition yt1 .



We study the Blume-Capel model on the simple cubic lattice:

H = −β
∑

<x ,y> sxsy + D
∑

x s
2
x where sx ∈ {−1, 0, 1}

In the limit D → −∞ we get the Ising model; For D < Dtri with
Dtri ≈ 2.03 line of second order phase transitions in the 3D Ising
universality class.

Improved model:
At D = 0.656(20) the amplitudes of corrections ∝ L−ω or ∝ t−θ

vanish;

From finite size scaling study:
ν = 0.63002(10), η = 0.03627(10) and ω = 0.832(6)

βc(D = 0.655) = 0.387721735(10)

See M.H., Phys. Rev. B 82, 174433 (2010)



Reduced Hamiltonian of the Blume-Capel model with film geometry

H = −β
∑

<xy>

sxsy + D
∑

x

s2x − h
∑

x

sx

− β1
∑

<xy>,x0=y0=1

sxsy − β2
∑

<xy>,x0=y0=L0

sxsy

+ D1

∑

x ,x0=1

s2x + D2

∑

x ,x0=L0

s2x

− h1
∑

x ,x0=1

sx − h2
∑

x ,x0=L0

sx

x = (x0, x1, x2) with 1 ≤ xi ≤ Li .

Periodic boundary conditions in 1 and 2-direction.

In our finite size scaling study L = L0 = L1 = L2.



We study three different models

◮ Blume-Capel D = 0.655 ; D1 = D2 = 0

◮ Blume-Capel D = 0.655 ; D1 = D2 = −∞
(spins at the surfaces are fixed to s = ±1 )

◮ Ising model

Simulation algorithm: Hybrid of cluster algorithm and local heatbath

We simulate at β = βc , h = h1 = h2 = 0 and β1 = β2 ≈ β1,s ,
lattice sizes up to L = 128
We compute the Taylor-series of observables in β1 up to O(β3

1)
around the simulation point.

For L = 128 we performed 2× 108, 1.4× 108, and 1.2× 108

measurements, for the three models respectively

In total 12 years on one core of a 2.4 GHz CPU



Finite size scaling of RG-invariant quantities R:

◮ Ratio of partition functions Za/Zp

◮ Binder cumulamt U4 =< m4 > / < m2 >2

R(β = βc , β1, h = 0, h1 = 0) = g(ct1L
yt1 )

Determine β1,s with the standard crossing method

S̄ :=
∂R1(β = βc , β1, h = 0, h1 = 0)

∂β1

∣

∣

∣

∣

β1=β1,f

∝ Lyt1

where R2(β = βc , β1 = β1,f , h = 0, h1 = 0) = R2,f

(See also talk of Francesco Parisen Toldin)



Ansaetze:
S̄ = cLyt1

S̄ = cLyt1 (1 + dL−1)

S̄ = cLyt1 (1 + dL−1 + eL−2)

Corrections:

◮ ∝ L−1 due to the surfaces

◮ ∝ L−ω′

, ω′ = 1.67(11), Newman and Riedel (1984)

◮ ∝ L−ω′′

, ω′′ ≈ 2, breaking of the rotational invariance by the
lattice; analytic background in the magn. susceptibility

◮ and infinitely many more ...



Table: Fitting the slope of Za/Zp at Za/Zp = 0.3138 for BC model with

D1 = D2 = 0

Ansatz Lmin yt1 d e χ2/DOF

1 32 0.71909(21) 4.26/3
1 48 0.71855(36) 0.89/2
2 12 0.71583(28) –0.148(6) 20.91/5
2 16 0.71700(38) –0.108(11) 1.57/4
3 8 0.71795(49) –0.026(21) –0.71(9) 5.39/5
3 12 0.71872(82) 0.022(49) –1.01(30) 3.75/4

BC model with D1 = D2 = −∞ gives consistent results
Results from Ising model deviate only slightly → residual leading
corrections have little effect in case of the Blume Capel model.
Conclusion:

yt1 = 0.718(2)



Behaviour of the surface susceptibility at the special point

χ̄ := χ|R=Rf
∝ L2yh1−2

Ansaetze
χ̄ = cLx

χ̄ = cLx(1 + dL−1)

χ̄ = cLx(1 + dL−1) + b

χ̄ = cLx(1 + dL−1 + eL−2) + b



Table: Fitting the surface susceptibilities χ11 and χ12 at Za/Zp = 0.3138.
Both the data for D1 = D2 = 0 and D1 = D2 = −∞ are taken into account.

Obs. Ansatz Lmin x d1 d2 χ2/DOF

χ̄11 2 24 1.2930(3) –0.09(1) 1.13(1) 10.37/7
χ̄11 2 32 1.2932(4) –0.09(2) 1.15(2) 4.48/5
χ̄11 3 16 1.2935(4) –0.08(5) 1.39(6) 6.87/7
χ̄11 4 8 1.2933(6) –0.19(15) 1.12(15) 8.56/9
χ̄12 2 24 1.2921(2) –0.36(1) 0.02(1) 4.01/7
χ̄12 2 32 1.2922(3) –0.35(1) 0.03(1) 2.96/5
χ̄12 3 16 1.2932(4) –0.19(6) 0.35(6) 10.28/7
χ̄12 3 24 1.2927(5) –0.25(12) 0.16(13) 3.10/5
χ̄12 4 8 1.2935(2) –0.13(2) 0.32(5) 14.61/9
χ̄12 4 12 1.2929(3) –0.30(4) 0.02(9) 7.83/7
χ̄12 4 16 1.2928(6) –0.14(17) –0.06(25) 3.19/5

Conclusion: x = 1.2929(10) → yh1 = 1.6465(6)



At the ordinary transition: yh1 = 0.7249(6)
M.H., Phys. Rev. B 83, 134425 (2011)

Comparison with previous results for the special point obtained by
Monte Carlo simulations and field theoretic methods:

Ref. year Method yh1 yt1
Binder, Landau 1984 MC 1.72(4) 0.89(6)
Binder, Landau 1990 MC 1.71(3) 0.94(6)

Vendruscolo et al. 1992 MC 1.65 1.17
Ruge et al. 1992 MC 1.624(8) 0.732(24)

Ruge, Wagner 1995 MC 1.623(2)
Selke, Pleimling 1998 MC 1.635(16)

Deng,Blöte,Nightingale 2005 MC 1.636(1) 0.715(1)
this work 2011 MC 1.6465(6) 0.718(2)

Reeve, Diehl, Dietrich 1981 ǫ-exp, naive 1.65 1.08
Diehl, Shpot 1998 ǫ-exp, res. 0.752
Diehl, Shpot 1994 3D-exp, res. 1.583 0.856



Conclusions:
The study of improved models allows to accurately determine critical
exponents in the case of surface critical phenomena
In the presence of surfaces there are corrections ∝ L−1 corrections.
These are difficult to disentangle from those ∝ L−ω which are present
in the generic case.

In order to estimate systematic errors due to the (necessary)
truncation of the Wegner series it is helpful to

◮ simulate several models

◮ study several observables

◮ use more than one Ansatz
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