# Complex temperature zeros in the partition function of the 3D Ising model

#### A. Gordillo-Guerrero, R. Kenna, J. J. Ruiz-Lorenzo

mailto: anto@unex.es



Una manera de hacer Europa





CompPhys11 - Leipzig, Germany

- Model and open problem
- Fisher zeros: definitions

#### 2 - Methodology

- Simulations
- Analysis
- 3 Results
  - Critical exponent  $\nu$  from Fisher zeros
  - Impact angle and critical amplitude ratio

- Model and open problem
- Fisher zeros: definitions
- 2 Methodology
  - Simulations
  - Analysis
- **3 Results** 
  - Critical exponent  $\nu$  from Fisher zeros
  - Impact angle and critical amplitude ratio

Hamiltonian:

$$\mathcal{H} = -J\sum_{\langle i,j\rangle} S_i S_j + \sum_i h_i S_i \qquad ; \qquad S_i = \pm 1$$

Partition function:

$$Z(\beta) = \sum_{\{S_i\}} e^{-\beta \mathcal{H}} \qquad ; \qquad \mathcal{F} = -k_B T \ln \mathcal{Z}$$

We can obtain all system's information from it.

Zero in the partition function — phase transition.

ı,

#### Phase transition in the model

- Depending on the dimension of the system:
  - D=1 : NO phase transition. Exactly solved.
  - D=2 : phase transition. Exactly solved.
  - D=3 : phase transition. Still unsolved?
  - Recent claims of an exact solution in 3D: J. Kaupuzs, *Ann. Phys NY* 10, 299 (2001), *arxiv.org:103.0888 (2011).* Z. D. Zhang, *Phil. Mag.* 87, 5309 (2007).
    N. H. March and Z. D. Zhang, *Phys. Lett. A*, 373, 2075 (2009).

# **Conflicting present results**

Most recent accepted numerical results:

A. Pelissetto and E. Vicari, *Physics Reports* 368, 549 (2002).

M. Hasenbusch, Phys. Rev. B 82, 174434 (2010).



#### Following the GFD theory:

J. Kaupuzs, Ann. Phys NY 10, 299 (2001), arxiv.org:103.0888 (2011).

$$\xi \propto |T - T_c|^{-\nu} \longrightarrow \nu = 2/3$$
$$C \propto |T - T_c|^{-\alpha} \longrightarrow \alpha = 2 - \nu D = 0$$

- Model and open problem
- Fisher zeros: definitions
- 2 Methodology
  - Simulations
  - Analysis
- **3 Results** 
  - Critical exponent  $\nu$  from Fisher zeros
  - Impact angle and critical amplitude ratio

### **Partition function zeros**

The partition function is a sum of positive terms:

$$Z(\beta) = \sum_{\{S_i\}} e^{-\beta \mathcal{H}} = \sum_E p(E,\beta) e^{-\beta E}$$

$$\mathcal{H} = -J\sum_{\langle i,j\rangle} S_i S_j + \sum_i h_i S_i$$



Analytic prolongation to complex field:

Lee-Yang zeros

Analytic prolongation to complex temperature:

Fisher zeros

#### Lee-Yang zeros

For a uniform external field:

$$Z = \sum_{\{\sigma_i\}} \exp\left(\beta \sum_{\langle i,j \rangle} \sigma_i \sigma_j + h \sum_i \sigma_i\right)$$



#### **Lee-Yang Theorem**

The partition function, Z, only vanishes for the purely imaginary magnetic field h.

The corresponding h values scale with:

$$h_{LY}(t) \propto |t|^{\Delta}$$

$$\Delta = \beta + \gamma$$

We define them as complex temperatures  $\beta$  such that:

$$Z(\beta) = Z(\eta + i\xi) = 0 \qquad (i^2 = -1)$$

- As there are some zeros, we order them by their moduli:  $|\beta^{(1)}(L)| < |\beta^{(2)}(L)| < |\beta^{(3)}(L)| < \dots$
- They will approach the real  $\beta_c(\infty)$  as  $L \to \infty$ .
- It is useful to introduce  $u = e^{-4\beta}$  as Z can be expressed as a polynomial in u.

For the analytic prolongation:

$$Z(\beta) = \sum_{E} p(E,\beta)e^{-\beta E} = \sum_{E} p(E,\beta)e^{-(\eta+i\xi)E} =$$
$$= \sum_{E} p(E,\beta)e^{-\eta E} [\cos(\xi E) - i\sin(\xi E)]$$

Rescaling with 
$$Z[Re(\beta)]$$
 we obtain:

$$R = \frac{Z(\beta)}{Z[\operatorname{Re}(\beta)]} = \frac{\sum_{E} p(E,\beta) e^{-\eta E} [\cos(\xi E) - i \sin(\xi E)]}{\sum_{E} p(E,\beta) e^{-\eta E}} = \\ = \langle \cos(\xi E) \rangle_{\eta} - i \langle \sin(\xi E) \rangle_{\eta}$$

Given: 
$$R = \langle \cos(\xi E) \rangle_{\eta} - i \langle \sin(\xi E) \rangle_{\eta}$$

we can estimate zeros in Z by:

Iooking for the simultaneous conditions:

 $\operatorname{Re}(R) = 0$  ;  $\operatorname{Im}(R) = 0$   $\longrightarrow$  <u>Graphical procedure</u>

minimizing the function:

$$R^{2} = <\cos(\xi E) >_{\eta}^{2} + <\sin(\xi E) >_{\eta}^{2}$$

Numerical procedure

#### Fisher zeros: expected Finite Size Scaling

Real parts will scale with:

$$\operatorname{Re}(\beta) - \beta_c(\infty) \sim L^{-1/\nu}$$

While imaginary parts must converge to the real axis with:

$$\mathrm{Im}(\beta) \sim L^{-1/\nu}$$

They will pin the real axis with an angle  $\varphi$ , being:

$$\tan[(2-\alpha)\varphi] = \frac{\cos\pi\alpha - A_-/A_+}{\sin\pi\alpha}$$

- Model and open problem
- Fisher zeros: definitions
- 2 Methodology
  - Simulations
  - Analysis
- **3 Results** 
  - Critical exponent  $\nu$  from Fisher zeros
  - Impact angle and critical amplitude ratio

3D Systems with  $4 \le L \le 72$ , updated using Metropolis+Wolff.

Simulation temperatures:  $\begin{cases} \beta_c(\infty) = 0.2216546\\ \beta'^{(2)}(L) : \text{ estimated second zero location} \end{cases}$ 

We performed  $10^7$  measures after equilibration.

We simulated 20 pseudo-samples merging their individual MC

histories and performing jack-knife with them.

Log. binning for the largest system (L = 72) and several samples



- Model and open problem
- Fisher zeros: definitions
- 2 Methodology
  - Simulations
  - Analysis
- **3 Results** 
  - Critical exponent  $\nu$  from Fisher zeros
  - Impact angle and critical amplitude ratio

#### **Analysis details: graphical estimation**

We can do histogram reweighting with the quantities:

$$<\cos(\xi E)>_{\eta} = \frac{\sum_{E}\cos(\xi E)e^{(\eta-\beta_{c})\Delta E}}{\sum_{E}e^{(\eta-\beta_{c})E}}$$
$$<\sin(\xi E)>_{\eta} = \frac{\sum_{E}\sin(\xi E)e^{(\eta-\beta_{c})\Delta E}}{\sum_{E}e^{(\eta-\beta_{c})E}}$$

and then estimate graphically the zeros looking for the crossing of

the conditions:

$$<\cos(\xi E)>_{\eta}=0$$
 and  $<\sin(\xi E)>_{\eta}=0$ 

## **Graphical location of Fisher zeros**

**1000x1000** extrapolation grid for L=16.



#### **Analysis details: minimization procedure**

Graphical procedures are time consuming and not accurate enough.

They can be used as starting point for a numerical minimization of:

$$R^{2} = <\cos(\xi E) >_{\eta}^{2} + <\sin(\xi E) >_{\eta}^{2}$$

We used a downhill simplex method (AMOEBA) to obtain  $\eta$  and  $\xi$ . N. A. Alves et al., *Int. J. Mod. Phys. C* **8**, 1063 (1997).

We have been able to locate zeros with small relative error bars:

$$\frac{\Delta\eta}{\eta} \sim 10^{-6} \qquad \qquad \frac{\Delta\xi}{\xi} \sim 10^{-3}$$

- Model and open problem
- Fisher zeros: definitions

#### 2 - Methodology

- Simulations
- Analysis
- 3 Results
  - Critical exponent  $\nu$  from Fisher zeros
  - Impact angle and critical amplitude ratio

#### Critical exponent $\nu$ from Fisher zeros

- We can obtain it from the scaling of real or imaginary parts, or from the modulus of the zeros.
  - We fit to the form:  $aL^{-1/\nu}(1+bL^{-\omega})$



### Critical exponent $\nu$ from Fisher zeros

Fixing  $\omega$  to the best present estimation:

 $\omega = 0.832(6)$   $\blacksquare$  M. Hasenbusch, *Phys. Rev. B*, **82**, 174433 (2010).

we obtain the best fit from  $Im(u^{(1)})$  :

Good agreement with accepted values

$$\nu = 0.63048(32)$$

$$\nu = 0.6301(4)$$

Using hyperscaling relations:

$$\nu d = 2 - \alpha \quad \longrightarrow \quad \alpha = 0.1086(10)$$

<u>Clearly incompatible with  $\alpha = 0$  from the conjectured exact solution.</u>

- Model and open problem
- Fisher zeros: definitions

#### 2 - Methodology

- Simulations
- Analysis
- 3 Results
  - Critical exponent  $\nu$  from Fisher zeros
  - Impact angle and critical amplitude ratio

We can plot the location of the zeros in the complex *u* plane:



Different definitions of the impact angle:



Different definitions of the impact angle:



Different definitions of the impact angle:



We take a conservative approach taking the average between definitions to obtain:

| L  | Angle Average | $(A_+/A)_{\rm average}$ |
|----|---------------|-------------------------|
| 32 | 61.3(4)       | 0.610(9)                |
| 48 | 62(1)         | 0.63(2)                 |
| 56 | 60.5(8)       | 0.59(2)                 |
| 64 | 60.5(7)       | 0.59(2)                 |
| 72 | 59.9(8)       | 0.58(2)                 |

Using a correction ansatz we extrapolate to TL with:  $\phi(L) = \phi + bL^{-\omega}$ 

$$\phi = 59.2(1.0)^{\circ} \longrightarrow \frac{A+}{A_{-}} = 0.56(3)$$

Good agreement with accepted value:  $A_{-}/A_{+} = 0.536(2)$ 

- Model and open problem
- Fisher zeros: definitions

#### 2 - Methodology

- Simulations
- Analysis
- **3 Results** 
  - Critical exponent  $\nu$  from Fisher zeros
  - Impact angle and critical amplitude ratio

- We have studied a typical model from an alternative perspective.
- Only 30-year old measures of the impact angle existed in the literature.
- We updated the measures obtaining good agreement for critical exponents and amplitude ratios.
- Our measures are incompatible with the values claiming exact solution for the 3D Ising model.

# Many thanks for your attention!