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Parallel Tempering

✤ provides an efficient method to investigate systems with 
rugged free-energy landscapes, particularly at low 
temperatures

✤used in many disciplines:
•biomolecules
•bioinformatics
•classical and quantum frustrated spin system
•QCD
•spin glasses
•zeolite structure solution



Parallel Tempering

✤How it works?

•different replica are simulated at different temperatures
•regular intervals an attempt is made to exchange the replica
•replica are exchanged via a Monte Carlo process the attempt 
is accepted with a probability

�� = �2 � �1

PPT(E1,�1 � E2,�2) = min[1, exp(���E)]

�E = E2 � E1with and
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Parallel Tempering

PPT(E1,�1 � E2,�2) = min[1, exp(���E)]
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An efficient selection of the temperature intervals for PT
simulations is still an open problem.

Several strategies have been proposed:
•based on the assumption of constant overlap between the
replica

•based on the maximum flow in the temperature space



Parallel Tempering

A(1� 2) =
�

E1,E2

P�1(E1)P�2(E2)PPT(E1,�1 � E2,�2),

where            is the probability for replica   with    to have the 
energy    .

P�i(Ei) i �i
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L = 16
�i = 0.38

A(i� i + 1) = 0.25 0.5

[P. Beale, Phys. Rev. Lett. 76, 78 (1996)]

Following the concept of constant acceptance rate between
replica:



Autocorrelation times
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Temperature Interval

✤cover the complete desired “critical” temperature range

C(�) = �2V (�e2� � �e�2)

⇥(�) = �V (⇥m2⇤ � ⇥|m|⇤2)

U2k(�) = 1 � ⇥m2k⇤/3⇥|m|k⇤2
. . .



Temperature Interval

✤cover the complete desired “critical” temperature range

S = {C,�, . . . }

S(�+/�
S ) = rSmax

Smax = S(�max
S )

�+
S > �max

S ��S < �max
Sand

[��Sk1
,�+

C ]“desired” range:
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Temperature Interval

�

S

�+
S��S

[��min,�+
max] = [min

S
{��S },max

S
{�+

S }]
�� = ��min �i

A(1� 2) �i = �+ � �+
max

general recipe:

1. compute the simulation temperatures of the replica equidistant in  , 
2. perform several hundred thermalization sweeps and a short
  measurement run,

3. check the histogram overlap between adjacent replica: if the overlap
  is too small, add on or two replica and goto step 1, else go on, 

4. use multi-histogram reweighting to determine     and     for all
  observables  ,

5. leading to the temperature interval                                               ,
6. start with               and compute a sequence of temperatures    with
  fixed acceptance rate               until                       ,

7. perform several hundred thermalization sweeps and a long
  measurement run.



Temperature intervall

The “desired” temperature interval for r = 2/3 as a function of 
the system size.

r =
2
3



Autocorrelation times

Autocorrelation times      and      for the energy of the 2D Ising 
model, where                      and        is the number of replica.

�int �e�

�e� = Nrep�int Nrep

r =
2
3
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Temperature intervall

understand the FSS of �e� in 2D Ising 

64x64
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understand the FSS of �e� in 2D Ising 



Temperature intervall

FSS of the “desired” simulation window for the 2D Ising model 
with r = 2/3.



Autocorrelation times

�int �e�

�e� = Nrep�int Nrep

Autocorrelation times      and      for the energy of the 3D Ising
model, where                      and        is the number of replica.

r =
2
3



Autocorrelation times

�int �e�

�e� = Nrep�int Nrep

Autocorrelation times      and      for the energy of the 3D Ising
model, where                      and        is the number of replica.



Summary

EB, A. Nußbaumer, and W. Janke, Phys. Rev. Lett. 101 (2008) 130603
EB and W. Janke, Phys. Rev. E 84 (2011) 036701 

What can we do to improve the parallel tempering algorithm?

•use the replica-exchange cluster algorithm
or
•use a constant acceptance rate between the replica
•keep the temperatures fixed
•take the temperature dependence of autocorrelation times 
into account
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Flow

The way through inverse temperature space of an arbitrarily
chosen replica:



Flow

PT moves

β

1000007500050000250000

0.52

0.5

0.48

0.46

0.44

0.42

0.4

0.38

(L = 80)
2D Ising model

The way through inverse temperature space of an arbitrarily
chosen replica:



Flow

�
� i

� =
nup(i)

nup(i) + ndown(i)

T
1

T
N

T
1

[H.G. Katzgraber, S. Trebst, D.A. Huse, and M. Troyer, J. Stat. Mech. P03018 (2006)]

The flow   is the fraction of replica which wander from the
largest   to the smallest as a function of the replica index  . 
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The flow   is the fraction of replica which wander from the
largest   to the smallest as a function of the replica index  . 
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Improved parallel tempering update scheme

✤How it works?
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Autocorrelation times
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The flow   is the fraction of replica which wander from the
largest   to the smallest as a function of the replica index  . 



Sweeps per tunneling
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