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Parallel Tempering

+ provides an efficient method to investigate systems with
rugged free-energy landscapes, particularly at low
temperatures

+used In many disciplines:
‘biomolecules
*bioinformatics
»classical and quantum frustrated spin system
L@ CD
*SpIN glasses
-zeolite structure solution



Parallel Tempering

*How It works!?

-different replica are simulated at different temperatures
‘regular intervals an attempt I1s made to exchange the replica

‘replica are exchanged via a Monte Carlo process the attempt
s accepted with a probabllity

PPT(E17 61 e EQ, 62) — min[l, exp(AﬁAE)]

with Aﬁ:62—61 and AE:EQ—El
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Parallel Tempering

Ppr(E1, 81 — E2,32) = min|1,exp(ABAE)

An efficient selection of the temperature intervals for PT
simulations 1s still an open problem.

Several strategies have been proposed:

*based on the assumption of constant overlap between the
replica

based on the maximum flow In the temperature space



Parallel Tempering

Following the concept of constant acceptance rate between
replica:

A(1—2)= )  Ps (E1)Ps,(E2)Per(E1, B — Ea, fB2),
Eq,Eo

where Pg, (E;)is the probability for replica ¢ with 5;to have the
SniEig /s

\ Aemien—om | Energy distributions of the 2D Ising

05 | | model with L = 16 for a set of inverse
g Gl >~ | temperatures starting 8; = 0.38 and

“ ~ 1 AE— i+1)=0.25and0.5.

8182 : | [P Beale, Phys. Rev. Lett. 76,78 (1996)]
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Autocorrelation times
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Temperature Interval

+cover the complete desired “critical” temperature range
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Temperature Interval

+cover the complete desired “critical” temperature range

Si=H@ it
SmaX i S( gla,X)

S(B/7) = rsme

BF > B3* and Bs < Bs™
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“desired” range: [Bs, »6¢]



Temperature Interval

+cover the complete desired “critical” temperature range
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“desired” range: [Bs, »6¢]



Temperature Interval

oeneral recipe:

|.
)i

1

compute the simulation temperatures of the replica equidistant in g,
perform several hundred thermalization sweeps and a short
measurement run,

. check the histogram overlap between adjacent replica: If the overlap

s too small, add on or two replica and goto step |, else go on,

. use multi-histogram reweighting to determine B5and B4 for all

observables S,

. leading to the temperature interval [Bpin: Bnax] = [min{f5}, mgX{ﬂ§ 1,
6.

start with 6~ = B,;,and compute a sequence of temperatures 3; with
fixed acceptance rate A(1 — 2) until 3; = 8% > 87

max’

perform several hundred thermalization sweeps and a long
Ril=dIstlrerment run.



Temperature intervall
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Autocorrelation times
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Autocorrelation times Tint and Teff for the energy of the 2D Ising

model, where Test = NrepTint and Nyep is the number of replica.



Autocorrelation times
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Autocorrelation times Tint and Teff for the energy of the 2D Ising
model, where Test = NrepTint and Nyep is the number of replica.



lemperature intervall

understand the FSS of 7.g
ABrew o< LYY /\/InL
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lemperature intervall

understand the FSS of 7.g
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Temperature intervall
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FSS of the “desired” simulation window for the 2D Ising model
with r = 2/3.



Autocorrelation times
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Autocorrelation times Tint and Teff for the energy of the 3D Ising
model, where Test = NrepTint and Nyep is the number of replica.



Autocorrelation times
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Autocorrelation times Tint and Teff for the energy of the 3D Ising
model, where Test = NrepTint and Nyep is the number of replica.



Summary

What can we do to improve the parallel tempering algorithm?

-use the replica-exchange cluster algorithm

or

*use a constant acceptance rate between the replica

Q=S BRtRe e mperatures fixed

-take the temperature dependence of autocorrelation times
iNto account

EB, A. Nul3baumer; and W. Janke, Phys. Rev. Lett. |01 (2008) 130603
EB and W. Janke, Phys. Rev. E 84 (201 1) 036/01
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Flow

The way through inverse temperature space of an arprtrarily
chosen replica:
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Flow

The way through inverse temperature space of an arprtrarily
chosen replica:
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Flow

The flown Is the fraction of replica which wander from the
largest B to the smallest as a function of the replica index <.

Nup (%)

’]’}:

Tup(2) + Ndown (%)

EREERSS 20 aber, S. [rebst, D.A. Huse, and M. Troyer, J. Stat. Mech. PO3018 (2006)]
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Improved parallel tempering update scheme

*How It works!?
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Autocorrelation times
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Flow
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PT moves/tunneling

Sweeps per tunneling
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