Finite dimensional spin glass in magnetic field

Raquel Álvarez Baños in the name of the Janus Collaboration:

Universidad Complutense de Madrid

Universidad de Zaragoza

Università di Roma 1, La Sapienza

Università di Ferrara

Universidad de Extremadura

Leipzig, 25 November 2011

Introduction

Edwards-Anderson model

$$\mathcal{H} = -\sum_{\langle ij
angle} \sigma_i J_{ij} \sigma_j - h \sum_i \sigma_i$$

• Bimodal couplings $J_{ij} = \pm 1$, Ising spins, $\sigma_i = \pm 1$, external magnetic field, h > 0

Several conflicting theoretical pictures

• There exist several theoretical pictures for a spin glass in the presence of an external magnetic field, $h \neq 0$.

• Droplet:

h

 Any infinitesimal field destroys the transition.

PM

- RSB (Replica Symmetry Breaking):
- The transition remains, and the so-called de Almeida-Thouless line exists.

SG

Introduction

Edwards-Anderson model

$$\mathcal{H} = -\sum_{\langle ij
angle} \sigma_i J_{ij} \sigma_j - h \sum_i \sigma_i$$

• Bimodal couplings $J_{ij} = \pm 1$, Ising spins, $\sigma_i = \pm 1$, external magnetic field, h > 0

Several conflicting theoretical pictures • Which of them best describes the behaviour? $D_L = 2$? $D_U = 6$... $D = \infty$ No transition RSB • Does the phase transition survive below the upper critical dimension, $D_U = 6$?

• Numerical work is needed to make these theories quantitative and determine which one best describes the SG phase.

イロト イヨト イヨト イヨト

Our simulations

Our implementation

- *L* < 16 systems on conventional PC's with multi spin coding technique.
- L = 16 system on Janus.
- Simulation times
 - Janus: 72 days, 52 processes.
- Offline analysis of the stored configurations

Our simulations

Our implementation

- *L* < 16 systems on conventional PC's with multi spin coding technique.
- L = 16 system on Janus.
- Simulation times
 - Janus: 72 days, 52 processes.
- Offline analysis of the stored configurations

Our parameters

- SG transition below T_{c} (h = 0) = 2.03(3) (E. Marinari & F. Zuliani, 1999).
- L < 16 systems \rightarrow 25600 samples (T_{\rm min} = 0.833).
- L = 16 system \rightarrow 4000 samples ($T_{\min} = 1.304$).
- Magnetic field values: *h* = 0.15, 0.3
- Sample-dependent thermalization protocol

Correlation functions: definition

• We consider the two point correlation functions, defined as

$$C^{(1)}(\mathbf{r}) = \overline{\sum_{\mathbf{x}} \left(\langle \sigma_{\mathbf{x}} \sigma_{\mathbf{r}} \rangle - \langle \sigma_{\mathbf{x}} \rangle \langle \sigma_{\mathbf{x}+r} \rangle \right)^2}$$
$$C^{(2)}(\mathbf{r}) = \overline{\sum_{\mathbf{x}} \left(\langle \sigma_{\mathbf{x}} \sigma_{\mathbf{r}} \rangle^2 - \langle \sigma_{\mathbf{x}} \rangle^2 \langle \sigma_{\mathbf{x}+r} \rangle^2 \right)}$$

Correlation functions: definition

• We consider the two point correlation functions, defined as

$$C^{(1)}(\mathbf{r}) = \overline{\sum_{\mathbf{x}} \left(\langle \sigma_{\mathbf{x}} \sigma_{\mathbf{r}} \rangle - \langle \sigma_{\mathbf{x}} \rangle \langle \sigma_{\mathbf{x}+r} \rangle \right)^2}$$
$$C^{(2)}(\mathbf{r}) = \overline{\sum_{\mathbf{x}} \left(\langle \sigma_{\mathbf{x}} \sigma_{\mathbf{r}} \rangle^2 - \langle \sigma_{\mathbf{x}} \rangle^2 \langle \sigma_{\mathbf{x}+r} \rangle^2 \right)}$$

• In the limits $T > T_c$, $L \to \infty$ and $k \ll 0$, the Fourier transform behaves as

$$\hat{C}(k)^{-1} \sim \xi^{-2} + 4 \sum_{\mu} \sin^2(k_{\mu}/2) + \dots$$

leading to the definition of the correlation length and the spin glass susceptibility

$$\xi_L = rac{1}{2\sin{(\pi/L)}} \sqrt{rac{\hat{C}(0)}{\hat{C}(2\pi/L)} - 1}, \qquad \chi_{SG} = \hat{C}(0)$$

Correlation length (I)

- Correlation length for our different system sizes and h = 0.15
- Growing behaviour at low temperatures

• The correlation length should scale as $\xi/L = f_{\xi} \left(L^{1/\nu} t \right)$

where $t = (T - T_c) / T_c$.

 ξ/L from different systems must cross at T_c (up to scaling corrections).

Similar results lead other researchers to conclude there is no phase transition

But that is a hasty conclusion

Anomalous behaviour of the lowest momentum propagator

- ξ/L depends on $\hat{C}(0)$
- $\hat{C}^{-1}(k)$ does not extrapolate smoothly to $\hat{C}^{-1}(0)$

• Lagrange interpolating polynomial in $k^{2} = \sum_{\mu} \sin^{2} (k_{\mu}/2)$ $C^{-1} (k) = a_{0}^{(n)} + a_{2}^{(n)} (k^{2}) + \dots + a_{2n}^{(n-1)} (k^{2})^{n-1}$ • extrapolation to k = 0

Anomalous behaviour of the lowest momentum propagator

- ξ/L depends on $\hat{C}(0)$
- $\hat{C}^{-1}(k)$ does not extrapolate smoothly to $\hat{C}^{-1}(0)$

ξ_L/L vs. *T* and *R*₁₂ vs *T*

- Scaling behaviour $R_{12} = f_R \left(L^{1/\nu} t \right)$
- Curves from different sizes cross at T^{*}_c
- Thermalization is extremely difficult as *h* increases
- For low *h* results may be influenced by the zero field transition

$$R_{12} = \frac{\hat{C}(2\pi/L, 0, 0, 0)}{\hat{C}(2\pi/L, 2\pi/L, 0, 0)}$$

Universal scaling invariant

• We focus on fixed values of *R*₁₂ instead of its crossing points

R. A. Baños (UZ)

Finite dimensional SG

The anomalous behaviour of $\hat{C}(0)$ as scaling corrections

- We wonder why R_{12} shows crossings while ξ/L does not \rightarrow corrections to scaling?
- Qualitative determination of how important they are $\rightarrow \xi/L$ vs. R_{12}

Corrections to scaling

- We plot ξ/L vs. $L^{-\omega}$ at high fixed $R_{12} = y$ (low temperatures)
- Data from $h = 0.3, 0.15, C^{(1)}$, and $C^{(2)}$ (two largest lattices) \rightarrow fit to

 $A(y, C) + B(y, C, h) L^{-\omega}$

Determination of ν and critical temperatures

$$T_{c} = T_{c}^{*}(h) + A(h, R_{12}) L^{1/\nu} (1 + B(h, R_{12}) L^{-\omega})$$

- Joint fit of data from *h* = 0.15, 0.3
- Linear behaviour as L → ∞ for h > 0
- Non-linear behaviour for h = 0

 $\nu = 1.46(7)[6]$ $\chi^2/d.o.f = 40.2/37$

Determination of ν and critical temperatures

$$T_{c} = T_{c}^{*}(h) + A(h, R_{12}) L^{1/\nu} (1 + B(h, R_{12}) L^{-\omega})$$

- Joint fit of data from *h* = 0.15, 0.3
- Linear behaviour as $L \to \infty$ for h = 0
- Non-linear behaviour for h > 0

u = 0.96(8) $\chi^2/\text{d.o.f} = 9.8/10$

Conclusions

- Strong finite size effects on ξ/L do not allow us to see the phase transition
- R₁₂ does show a critical behaviour (crossing points)
- The determination of ω allows us to include corrections to scaling
- We have been able to determine the critical exponent *ν* and the critical temperatures *T_c*(*h*)
- ν clearly differs from ν (h = 0) \rightarrow they belong to different universality classes

Conclusions

- Strong finite size effects on ξ/L do not allow us to see the phase transition
- R₁₂ does show a critical behaviour (crossing points)
- $\bullet\,$ The determination of ω allows us to include corrections to scaling
- We have been able to determine the critical exponent *ν* and the critical temperatures *T_c*(*h*)
- ν clearly differs from ν (h = 0) \rightarrow they belong to different universality classes

- We have been able to draw a sketch of the dAT line
- Infinite volume extrapolation for h = 0.075, 0.15, 0.3
- Fisher & Sompolinsky fit (1985)
- β and γ taken from literature