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Introduction

Edwards-Anderson model

H= —ZU,'J,-/Uj = hZa,-
(i i

@ Bimodal couplings J; = %1, Ising spins, o; = £1, external magnetic field, h > 0

v

Several conflicting theoretical pictures

@ There exist several theoretical pictures for a spin glass in the presence of an
external magnetic field, h # 0.

@ Droplet: @ RSB (Replica Symmetry Breaking):
@ Any infinitesimal field @ The transition remains, and the so-called de
destroys the transition. Almeida-Thouless line exists.
h h
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Introduction

Edwards-Anderson model
H = —ZU,'J/]O'] — hZa,-
(i) i

@ Bimodal couplings J; = +£1, Ising spins, o; = 1, external magnetic field, h > 0

v

Several conflicting theoretical pictures
@ Which of them best describes the behaviour?

|
I
D, =2 ? Dy=6 e D=
No transition RSB
@ Does the phase transition survive below the upper critical dimension, Dy = 6?

@ Numerical work is needed to make these theories quantitative
and determine which one best describes the SG phase.
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Our simulations

Our implementation

@ L < 16 systems on conventional PC’s
with multi spin coding technique.
@ L =16 system on Janus.
@ Simulation times
@ Janus: 72 days, 52 processes.

@ Offline analysis of the stored
configurations
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@ Offline analysis of the stored
configurations

Our parameters

(]

SG transition below T (h = 0) = 2.03(3) (E. Marinari & F. Zuliani, 1999).
L < 16 systems — 25600 samples (Tmin = 0.833).

L = 16 system — 4000 samples ( Tmin = 1.304).

Magnetic field values: h = 0.15,0.3

Sample-dependent thermalization protocol

®© 6 6 o
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Correlation functions: definition

@ We consider the two point correlation functions, defined as

Y (r) =" ((oxor) — {ox) (oxsr)?

X

C®(r) = ((oxon)?2 — (ox)2(ox+r)?)

X
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Correlation functions: definition

@ We consider the two point correlation functions, defined as

Y (r) =" ((oxor) — {ox) (oxsr)?

X

C®(r) = ((oxon)?2 — (ox)2(ox+r)?)

X

@ Inthe limits T > T, L — oo and k < 0, the Fourier transform behaves as

Ck)y '~ 244> sin? (ku/2) + ...

leading to the definition of the correlation length and the spin glass susceptibility

1 C(0)

“asn(/D\ E@nn - Xe=C¢0

&L
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Correlation length (1)

@ Correlation length for our
1 different system sizes and
h=0.15

| @ Growing behaviour at low
temperatures
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Correlation length (1)

@ The correlation length should
scale as

€/L=tf (L”"t)

where t = (T — T¢) / Te.

@ ¢/L from different systems
must cross at T¢ (up to
0 : ‘ ‘ scaling corrections).
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@ Similar results lead other researchers to conclude there is no phase transition
@ But that is a hasty conclusion J
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Correlation length (I1)

Anomalous behaviour of the lowest momentum propagator

e ¢/L depends on € (0)
Yol (k) does not extrapolate smoothly to & (0)

1st order
2nd order
15 3rd order
4th order
5th order
6th order

@ Lagrange interpolating polynomial in

Ko =3, sin® (k./2)
e~ (}()—a + & (/(2)+ & ”(/(2)"_1

@ extrapolation to K = 0
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Correlation length (I1)

Anomalous behaviour of the lowest momentum propagator
e ¢/L depends on € (0)

Yok (k) does not extrapolate smoothly to o (0)
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& /Lvs. Tand Ripvs T

C(2r/L,0,0,0)
2= %
C(2r/L,2xw/L,0,0)
Universal scaling invariant

2.4
=~ e L=16
o1 15 2 25 e [ =12
! 22+ s =10 |
—— L= 8
—— L= 6
. . 2L —— L= 5 |
@ Scaling behaviour
R = fa (L‘/”t) & 1sl
@ Curves from different 16|
sizes cross at T}
@ Thermalization is Lar
extremely difficult as h " ‘ ‘ ‘
increases ! 15 ;o 25
@ For low hresults may be
influenced by the zero ) . .
it e @ We focus on fixed values of Ryz instead of its

~ crossing points
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The anomalous behaviour of € (0) as scaling corrections

@ We wonder why Ry> shows crossings while £/L does not — corrections to scaling?
@ Qualitative determination of how important they are — &/L vs. Ri2

I= 51—
L= 66—
06 F L= 8+ 1
L=10 —e=—
L=12 —=—
[=16 = @ Curves merge at low R
(high T)
2 ™ ] o They differ at high Ri»
(low T)
@ Quantitative
0.2 b g g .
determination of scaling
o corrections is possible
1.2 l.‘4 116 1‘.8 210 2‘.2
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Corrections to scaling

@ Weplot&/Lvs. L™
@ Data from h=0.3,0.15, ¢, and C®

&(R12=Y)
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at high fixed Ry2 = y (low temperatures)
(two largest lattices) — fit to

A(y,C)+B(y,C,h) L™

[ —e— h=0.3

h=0

—e— h=0.3

—— h=0.15, £"(1.85)
—=— h=0.15, £"(1.80)
0.3

F —e— h=0.15, £(1.75)
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Finite dimensional SG

@ Joint fit for h = 0.15,0.3,
all Ry = y and both
correlation functions

@ w=1.43(37)
@ \?/d.of.=9.2/11
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Determination of v and critical temperatures

Te=T; (h)+ A(h,Ri2) L'” (14 B(h,Ri2) L)

23| e .

S 22t F RN - LR

RIPPR . = 2

= e e Joint fit of data from
20t : h=0.15,0.3

5 @ Linear behaviour as L — oo

z forh>0

= @ Non-linear behaviour for

h=0

®

S v = 1.46(7)[6]

Ry

R x?/d.o.f = 40.2/37
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Determination of v and critical temperatures

Te=T; (h)+ A(h,Ri2) L'” (14 B(h,Ri2) L)

- 4
* *
8 * L] -
L D .
= : . e
. . @ Joint fit of data from
T Ao - h=0.15,0.3
—~ 20 i Rios % o] . .
9 R0 e - x @ Linear behaviour as L — oo
z M . . forh=0
E’ 15 " B . .
@ Non-linear behaviour for
25 F i R,=160 | o h>0
@ - RZT% g
3 201 = Gelio - : 1 v = 0.96(8)
L | = m=two g B |
= x°/d.o.f=9.8/10
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Conclusions

@ Strong finite size effects on £/L do not allow us to see the phase transition
@ Ry, does show a critical behaviour (crossing points)
@ The determination of w allows us to include corrections to scaling

@ We have been able to determine the critical exponent v and the critical
temperatures Tc (h)

@ v clearly differs from v (h = 0) — they belong to different universality classes
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o8| e ] @ We have been able to draw a sketch of
Wl | the dAT line
< T~ @ Infinite volume extrapolation for
o4f R . 1 h=0.075,0.15,0.3
02} s . 1 @ Fisher & Sompolinsky fit (1985)
- @ 3 and ~ taken from literature
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