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Mott insulators with partially filled d-shells

Mott insulating transition metal oxides with partially filled 3d-shells
– such as the manganites – exhibit rich phase diagrams.

Non-trivial interplay of spin, charge, and orbital degrees of freedom.
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Description of orbital degree of freedom

General orbital state is superposition of eg basis states
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J. van den Brink, New Journal of Physics 6, 210 (2004).
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Orbital interactions: The 120° model
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Jahn-Teller effect: orbital interactions mediated by phonons 

J. van den Brink, New Journal of Physics 6, 210 (2004).

favourable nearest neighbour configurations:

x-dir y-dir
z-dir



Orbital interactions: The 120° model

� �

�

�
�

Jahn-Teller effect: orbital interactions mediated by phonons 

J. van den Brink, New Journal of Physics 6, 210 (2004).

favourable nearest neighbour configurations:

τz

τy

T

|3z2 − r2�

|3y2 − r2�

0◦

120◦

240◦|3x2 − r2�

τx

x-dir y-dir
z-dir



Orbital interactions: The 120° model

� �

�

�
�

Jahn-Teller effect: orbital interactions mediated by phonons 

J. van den Brink, New Journal of Physics 6, 210 (2004).

favourable nearest neighbour configurations:

H120 = −
�

i

�
τxi τ

x
i+ex

+ τyi τ
y
i+ey

+ τzi τ
z
i+ez

�

τ i =





√
3/2 1/2

−
√
3/2 1/2
0 1




�
T x
i

T z
i

�
for arbitr. state T define projection onto favourable states

τz

τy

T

|3z2 − r2�

|3y2 − r2�

0◦

120◦

240◦|3x2 − r2�

τx

x-dir y-dir
z-dir



Critical properties of the 
classical 120º model

pseudospins are classical O(2) spins
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1. Is there collective ordering at 

finite T?
2. What are the critical properties 
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our approach: extensive 
Monte Carlo simulations!



Zero temperature: degenerate ground states

Emergent symmetries:   U(1) and Z2 symmetries

Ground-state manifold: infinite, but sub-extensive number of states

reflect all spins in xy plane at 0°
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D = 23L

M. Biskup et al., Comm. Math. Phys. 255, 253 (2005).
Z. Nussinov et al., Europhys. Lett. 67, 990 (2004).

example of Z2 symmetry:
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Spin-wave approximation:  expansion in fluctuations
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A.v. Rynbach, S. Todo, S. Trebst, Phys. Rev. Lett. 105, 14640 (2010).
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Orbital-ordering phase transition

heat capacity
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heat capacity
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Situation reminiscent of 3D XY model 
with 6-fold anisotropy

e.g., J. Lou, A. Sandvik, L. Balents, Phys. Rev. Lett. 99, 207203 (2007).

could therefore expect XY universality 
for orbital-ordering transition
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Additional directional ordering
 a key feature not present in an ordinary  XY spin 

model: 

m
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Critical exponents of the120° model

G(r) = r−2+d−ηξ ∼ |t|−ν

orbital-orbital 
correlation length

decay of orbital-orbital correlations
at critical temperatur



Critical exponents of the120° model
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Critical exponents of the120° model
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VERY efficient MC simulations:
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(2.09 million spins !)

120°
modelcontinous 

spins

discrete spins

S T
HXY =

�

�ij�

SiSj

discrete models have the same 
ordered state on spin level!

Want a 
simplified 
model ...



Detailed comparison of FSS
systematic comparison of critical scaling:
scaling of effective critical exponents
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Detailed comparison of FSS
systematic comparison of critical scaling:
scaling of effective critical exponents

η = 2− ln (χ(2L)/χ(L)) / ln(2)

χ(L) ∝ L2−η(1 + · · · )

6 state clock model 

120°-clock model 
(for multiple bc)

EgCL PBC
EgCL SBC
Eg SBC
Z6 PBC
Ref. XY

ν

0.66

0.62

0.58

0.54

EgCL PBC
EgCL SBC
Eg SBC
Z6 PBC
Ref. XY

1/L

η

0.140.120.100.080.060.040.020.00

0.15

0.10

0.05

0.00

−0.05

−0.10

120° model 

✓

✘

✘

XY?



Summary

• ordering nature: verified orbital ordering with 6-fold 
degeneracy

• criticality: obtained critical exponents which differ from 
standard magnetic universality classes (XY)

• consequence: expect to see novel physics different from  
ordinary spin models of magnetisms (e.g. disorder, ...)

• outlook: write down a Ginzburg-Landau theory..., 
simulations on GPUs, ...

first large scale Monte Carlo study of the prototypical  classical 
120º model for orbital ordering

T. Tanaka, M. Matsumoto, and S. Ishihara, Phys. Rev. Lett. 95, 267204 (2005)
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Influence of U(1) length-scale for T<Tc
J. Lou, A. Sandvik, L. Balents, Phys. Rev. Lett. 99, 207203 (2007).
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consider order distribution function for T < Tc:

• T= Tc:  U(1) symmetry 

• T<Tc:
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to scaling. This simply reflects the irrelevance of the an-
isotropy at the critical point.

Because the anisotropy is dangerously irrelevant, a
larger contribution, however, emerges when tL1=! ! 1,
i.e., L ! "" t#!. In this limit, the system can be regarded
as possessing long-range XY order, and the only significant
fluctuations are the global fluctuations of the XY phase #.
This is biased by the anisotropy. The scale $ of the total
anisotropy (free) energy can be estimated by its typical
magnitude within an XY correlation volume, h"3#!q , mul-
tiplied by the number of correlation volumes, $L="%3, i.e.,
$ & hL3"#!q . Note that although the energy per correla-
tion volume is small (due to the irrelevance of anisotropy at
the critical point), the number of correlation volumes be-
comes very large and more than compensates for this
smallness for L=" sufficiently large.

From this argument, we see that for L=" ! 1, the
distribution of angles # is just determined from a
Boltzmann factor for a single XY spin with the q-fold
anisotropy energy "# $ cosq#. Furthermore, for L=" !
1, the magnitude j ~mj ' hmi is approximately nonfluctuat-
ing. Thus the distribution factors into the form P$jmj; #% &
hmi#2%$jmj# hmi%P$#%, with P$#% & 1

Z e
$ cos$q#%, where

Z & R
2&
0 d#e$ cos$q#% is the single-spin partition function.

It is then straightforward to obtain from Eq. (4)

 hmqi & hmi I1$$%
I0$$%

; (8)

where In is the modified Bessel function of order n.
Oshikawa obtained a similar expression in a different
way [9], but we disagree about his scaling variable.
Comparing (8) with the scaling form in Eq. (6), we see
that !q & !q!=3 (aq & !q=3), $ & h$tL1=!q%3!q , and

 g$X% / I1$~hX3!q%
I0$~hX3!q%

: (9)

Here ~h should be viewed as a nonuniversal scale factor.
From the above discussion, one sees that this form is valid
for L=" ! 1 but L="q is arbitrary. For L=" of O$1% or
smaller, L="q ( 1 (implying $, X ( 1), and the scaling
form for hmqi becomes small and of order the expected
correction to scaling in the critical regime.

In Fig. 3 we show results for the two order parameters
for systems with q & 4, 5, 6. We have studied several
values of h=J and here show results for a different value
for each q. We have extracted Tc using finite-size scaling of
hmi with Eq. (5) and the XY exponents. This works very
well for all q, confirming the irrelevance of h. The mag-
netization for T < Tc is seen to decrease marginally with
increasing q in Fig. 3. The Zq order parameter hmqi
changes more drastically, being strongly suppressed close
to Tc for large q. This is expected, as hmqi should vanish
for all T in the XY limit q ! 1. For Z4, the hmqi curves for
different L cross each other, with the crossing points mov-
ing closer to Tc as L increases. This is consistent with the

above discussion of course graining: In the ordered state
close to Tc, hmqi should first, for small L, decrease with
increasing L as the q-peaked structure in P$#% diminishes
due to averaging over more spins. For larger L, hmqi starts
to grow with L as the length scale " is exceeded. This
behavior is more difficult to observe directly for q & 5, 6
because hmqi is small and dominated by statistical noise
close to Tc where the curves cross.

Figure 4 shows finite-size scaling of the Zq order pa-
rameter hmqi, using the hypothesis (6) and the XY value for
'. Adjusting !q & aq! for each q we find satisfactory data
collapse using a4 & 1:07$3%, a5 & 1:6$1%, a6 & 2:4$1%,
and, not shown in the figure, a8 & 4:2$3%. These results
are consistent with the form aq & a4$q=4%2, in qualitative
agreement with the ( expansion by Oshikawa, which gave
aq ! q2=30 for large q [9]. However, in the ( expansion
there are significant deviations from the q2 form in the
range of q values considered here. Our a6 is smaller than
the value ' 3:5 obtained on the basis of the 3-state Potts
antiferromagnet [9].

In Fig. 4 we also show the scaling function (9). It does
not match exactly the collapsed data, but the agreement
improves as q increases. As we have discussed above, the
scaling function represents the dominant behavior for T <
Tc, but exactly at Tc this contribution vanishes and the
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FIG. 3 (color online). The XY order parameter hmi (solid
curves) and the Zq order parameter hmqi (dashed curves) vs
temperature for q & 4, 5, 6. The system sizes are L & 8, 10, 12,
14, 16, 24, and 32. The curves become sharper (increasing slope)
around Tc (indicated by vertical lines). The ratios h=J used are
indicated on the graphs.
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Influence of U(1) length-scale for T<Tc
J. Lou, A. Sandvik, L. Balents, Phys. Rev. Lett. 99, 207203 (2007).

!"#
consider order distribution function for T < Tc:

• T= Tc:  U(1) symmetry 

• T<Tc:

• true 6-fold structure

• continuous U(1) 

L > Λ

aq=6;XY = 2.2(1) a120◦ = 1.2(1)

L < Λ

�m6� =
� 1

0
dr

� 2π

0
dθr2P (r, θ) cos(6θ)

�m� =
� 1

0
dr

� 2π

0
dθr2P (r, θ) ξ

Λ

to scaling. This simply reflects the irrelevance of the an-
isotropy at the critical point.

Because the anisotropy is dangerously irrelevant, a
larger contribution, however, emerges when tL1=! ! 1,
i.e., L ! "" t#!. In this limit, the system can be regarded
as possessing long-range XY order, and the only significant
fluctuations are the global fluctuations of the XY phase #.
This is biased by the anisotropy. The scale $ of the total
anisotropy (free) energy can be estimated by its typical
magnitude within an XY correlation volume, h"3#!q , mul-
tiplied by the number of correlation volumes, $L="%3, i.e.,
$ & hL3"#!q . Note that although the energy per correla-
tion volume is small (due to the irrelevance of anisotropy at
the critical point), the number of correlation volumes be-
comes very large and more than compensates for this
smallness for L=" sufficiently large.

From this argument, we see that for L=" ! 1, the
distribution of angles # is just determined from a
Boltzmann factor for a single XY spin with the q-fold
anisotropy energy "# $ cosq#. Furthermore, for L=" !
1, the magnitude j ~mj ' hmi is approximately nonfluctuat-
ing. Thus the distribution factors into the form P$jmj; #% &
hmi#2%$jmj# hmi%P$#%, with P$#% & 1

Z e
$ cos$q#%, where

Z & R
2&
0 d#e$ cos$q#% is the single-spin partition function.

It is then straightforward to obtain from Eq. (4)

 hmqi & hmi I1$$%
I0$$%

; (8)

where In is the modified Bessel function of order n.
Oshikawa obtained a similar expression in a different
way [9], but we disagree about his scaling variable.
Comparing (8) with the scaling form in Eq. (6), we see
that !q & !q!=3 (aq & !q=3), $ & h$tL1=!q%3!q , and

 g$X% / I1$~hX3!q%
I0$~hX3!q%

: (9)

Here ~h should be viewed as a nonuniversal scale factor.
From the above discussion, one sees that this form is valid
for L=" ! 1 but L="q is arbitrary. For L=" of O$1% or
smaller, L="q ( 1 (implying $, X ( 1), and the scaling
form for hmqi becomes small and of order the expected
correction to scaling in the critical regime.

In Fig. 3 we show results for the two order parameters
for systems with q & 4, 5, 6. We have studied several
values of h=J and here show results for a different value
for each q. We have extracted Tc using finite-size scaling of
hmi with Eq. (5) and the XY exponents. This works very
well for all q, confirming the irrelevance of h. The mag-
netization for T < Tc is seen to decrease marginally with
increasing q in Fig. 3. The Zq order parameter hmqi
changes more drastically, being strongly suppressed close
to Tc for large q. This is expected, as hmqi should vanish
for all T in the XY limit q ! 1. For Z4, the hmqi curves for
different L cross each other, with the crossing points mov-
ing closer to Tc as L increases. This is consistent with the

above discussion of course graining: In the ordered state
close to Tc, hmqi should first, for small L, decrease with
increasing L as the q-peaked structure in P$#% diminishes
due to averaging over more spins. For larger L, hmqi starts
to grow with L as the length scale " is exceeded. This
behavior is more difficult to observe directly for q & 5, 6
because hmqi is small and dominated by statistical noise
close to Tc where the curves cross.

Figure 4 shows finite-size scaling of the Zq order pa-
rameter hmqi, using the hypothesis (6) and the XY value for
'. Adjusting !q & aq! for each q we find satisfactory data
collapse using a4 & 1:07$3%, a5 & 1:6$1%, a6 & 2:4$1%,
and, not shown in the figure, a8 & 4:2$3%. These results
are consistent with the form aq & a4$q=4%2, in qualitative
agreement with the ( expansion by Oshikawa, which gave
aq ! q2=30 for large q [9]. However, in the ( expansion
there are significant deviations from the q2 form in the
range of q values considered here. Our a6 is smaller than
the value ' 3:5 obtained on the basis of the 3-state Potts
antiferromagnet [9].

In Fig. 4 we also show the scaling function (9). It does
not match exactly the collapsed data, but the agreement
improves as q increases. As we have discussed above, the
scaling function represents the dominant behavior for T <
Tc, but exactly at Tc this contribution vanishes and the
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FIG. 3 (color online). The XY order parameter hmi (solid
curves) and the Zq order parameter hmqi (dashed curves) vs
temperature for q & 4, 5, 6. The system sizes are L & 8, 10, 12,
14, 16, 24, and 32. The curves become sharper (increasing slope)
around Tc (indicated by vertical lines). The ratios h=J used are
indicated on the graphs.
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