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GPU computation frameworks

GPGPU = General Purpose Computation on Graphics Processing Unit

“Old” times: use original graphics primitives

OpenGL

DirectX

Vendor specific APIs for GPGPU:

NVIDIA CUDA: library of functions performing computations on GPU (C, C++,
Fortran), additional preprocessor with language extensions

ATI/AMD Stream: similar functionality for ATI GPUs

Device independent schemes:

BrookGPU (Standford University): compiler for the “Brook stream program
language” with backends for different hardware; now merged with AMD Stream

Sh (University of Waterloo): metaprogramming language for programmable GPUs

OpenCL (Open Computing Language): open framework for parallel programming
across a wide range of devices, ranging from CPUs, Cell processors and GPUs to
handheld devices
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NVIDIA architecture
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NVIDIA architecture
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NVIDIA architecture

Memory layout:
Registers: each multiprocessor is equipped with several thousand
registers with local, zero-latency access
Shared memory: processors of a multiprocessor have access a small
amount (16 KB for Tesla, 48 KB for Fermi) of on chip, very small latency
shared memory
Global memory: large amount (currently up to 4 GB) of memory on
separate DRAM chips with access from every thread on each
multiprocessor with a latency of several hundred clock cycles
Constant and texture memory: read-only memories of the same speed as
global memory, but cached
Host memory: cannot be accessed from inside GPU functions, relatively
slow transfers
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Spin models

Consider classical spin models with nn interactions, in particular

Ising model

H = −J
∑
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Metropolis simulations

Computations need to be organized to suit the GPU layout for maximum performance:

a large degree of locality of the calculations, reducing the need for communication
between threads

a large coherence of calculations with a minimum occurrence of divergence of the
execution paths of different threads

a total number of threads significantly exceeding the number of available
processing units

a large overhead of arithmetic operations and shared memory accesses over
global memory accesses
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Metropolis simulations

Computations need to be organized to suit the GPU layout for maximum performance:

a large degree of locality of the calculations, reducing the need for communication
between threads

a large coherence of calculations with a minimum occurrence of divergence of the
execution paths of different threads

a total number of threads significantly exceeding the number of available
processing units

a large overhead of arithmetic operations and shared memory accesses over
global memory accesses

Consequences for (Metropolis) simulations:

best to use an independent RNG per thread⇒ need to make sure that
sequences are uncorrelated

divide system into independent tiles⇒ level-1 checkerboard

each tile should fit into shared memory

divide tile (again) in checkboard fashion for parallel update with different threads
⇒ level-2 checkerboard
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Checkerboard decomposition

(red) large tiles:
thread blocks

(red) small tiles:
individual
threads

load one large
tile (plus
boundary) into
shared memory

perform several
spin updates
per tile
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Performance

How to assess performance?

what to compare to (one CPU core, whole CPU, SMP system, ...)
here: Tesla C1060 vs. Intel QuadCore (Yorkfield) @ 3.0 GHz/6 MB
for really fair comparison: optimize CPU code for cache alignment, use
SSE instructions etc.
ignore measurements, since spin flips per µs, (ns, ps) is well-established
unit for spin systems
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Performance

How to assess performance?

what to compare to (one CPU core, whole CPU, SMP system, ...)
here: Tesla C1060 vs. Intel QuadCore (Yorkfield) @ 3.0 GHz/6 MB
for really fair comparison: optimize CPU code for cache alignment, use
SSE instructions etc.
ignore measurements, since spin flips per µs, (ns, ps) is well-established
unit for spin systems

Example: Metropolis simulation of 2D Ising system
use 32-bit linear congruential generator
no neighbor table since integer multiplies and adds are very cheap (4
instructions per clock cycle and processor)
need to play with tile sizes to achieve best throughput
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2D Ising ferromagnet

10−1

100

101

t fl
ip

[n
s]

16 32 64 128 256 512 1024 2048 4096 8192 16384
L

T = 4
T = 8
T = 16
T = 32

M. Weigel (Mainz) Spin models on GPU CompPhys10 8 / 26



2D Ising ferromagnet

10−1

100

101

t fl
ip

[n
s]

32 64 128 256 512 1024 2048 4096 8192 16384
L

CPU

k = 1

k = 100

k = 100, Fermi

M. Weigel (Mainz) Spin models on GPU CompPhys10 8 / 26



2D Ising ferromagnet
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A closer look

Comparison to exact results:
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A closer look

Random number generators: significant deviations from exact result for test case of
1024× 1024 system at β = 0.4, 107 sweeps

checkerboard update uses random numbers in different way than sequential
update

linear congruential generators can skip ahead: “right” way uses non-overlapping
sub-sequences

“wrong” way uses sequences from random initial seeds, many of which must
overlap
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A closer look

Random number generators: significant deviations from exact result for test case of
1024× 1024 system at β = 0.4, 107 sweeps

method e ∆rel CV ∆rel

exact 1.106079207 0 0.8616983594 0
sequential update (CPU)

LCG32 1.1060788(15) −0.26 0.83286(45) −63.45
LCG64 1.1060801(17) 0.49 0.86102(60) −1.14
Fibonacci, r = 512 1.1060789(17) −0.18 0.86132(59) −0.64

checkerboard update (GPU)
LCG32 1.0944121(14) −8259.05 0.80316(48) −121.05
LCG32, random 1.1060775(18) −0.97 0.86175(56) 0.09
LCG64 1.1061058(19) 13.72 0.86179(67) 0.14
LCG64, random 1.1060803(18) 0.62 0.86215(63) 0.71
Fibonacci, r = 512 1.1060890(15) 6.43 0.86099(66) −1.09
Fibonacci, r = 1279 1.1060800(19) 0.40 0.86084(53) −1.64
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A closer look

Speedups:

In two dimensions:

0.076 ns on GPU vs. 8 ns on CPU: factor 105
0.034 ns on Fermi GPU: factor 235
CPU code up to 10 times faster, GPU code up to 9 times faster than that
used in
T. Preis, P. Virnau, W. Paul, J. J. Schneider, J. Comput. Phys. 228,

4468 (2009)

In three dimensions:

0.13 ns vs. 14 ns on CPU: factor 110
0.067 ns on Fermi GPU: factor 210
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Heisenberg model

Maximum performance around 100 ps per spin flip for Ising model (vs. around 10 ns on
CPU). What about continuous spins, i.e., float instead of int variables?

M. Weigel (Mainz) Spin models on GPU CompPhys10 10 / 26



Heisenberg model

Maximum performance around 100 ps per spin flip for Ising model (vs. around 10 ns on
CPU). What about continuous spins, i.e., float instead of int variables?

⇒ use same decomposition, but now floating-point computations are dominant:

CUDA is not 100% IEEE compliant

single-precision computations are supposed to be fast, double precision
(supported since recently) much slower

for single precision, normal (“high precision”) and extra-fast, device-specific
versions of sin, cos, exp etc. are provided
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Heisenberg model: performance
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Heisenberg model: performance
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Heisenberg model: performance
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Heisenberg model: stability

Performance results:

CPU: 185 ns (single) resp. 264 (double) per spin flip

GPU: 0.8 ns (single), 0.4 ns (fast single) resp. 5.3 ns (double) per spin flip
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Heisenberg model: stability

Performance results:
CPU: 185 ns (single) resp. 264 (double) per spin flip
GPU: 0.8 ns (single), 0.4 ns (fast single) resp. 5.3 ns (double) per spin flip

How about stability?
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Cluster algorithms

Would need to use cluster algorithms for efficient equilibrium simulation of spin models
at criticality:

1 Activate bonds between like spins with probability p = 1− e−2βJ .
2 Construct (Swendsen-Wang) spin clusters from domains connected by active

bonds.
3 Flip independent clusters with probability 1/2.
4 Goto 1.
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Critical configuration
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Cluster algorithms

Would need to use cluster algorithms for efficient equilibrium simulation of spin models
at criticality:

1 Activate bonds between like spins with probability p = 1− e−2βJ .
2 Construct (Swendsen-Wang) spin clusters from domains connected by active

bonds.
3 Flip independent clusters with probability 1/2.
4 Goto 1.

Steps 1 and 3 are local⇒ Can be efficiently ported to GPU.
What about step 2? ⇒ Domain decomposition into tiles.

labeling inside of domains

Hoshen-Kopelman

breadth-first search

self-labeling

union-find algorithms

relabeling across domains

self-labeling

hierarchical approach

iterative relaxation
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BFS or Ants in the Labyrinth
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only wave-front vectorization would be possible⇒ many idle threads
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Self-labeling
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Self-labeling
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effort is O(L3) at the critical point, but can be vectorized with O(L2) threads
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Union-find
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Union-find
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tree structure with two optimizations:

balanced trees
path compression

⇒ root finding and cluster union
essentially O(1) operations
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Performance

self-labeling, global

union-find, hierarchical

union-find, relaxation
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Performance

flip
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setup boundary

label local
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Performance

Problems with cluster labeling on GPU:
overhead from parallelization (relaxation steps)
lack of thread-level parallelism
idle threads in hierarchical schemes
best performance about 29 ns per spin flip, improvements possible
problems not due to type of computations: 2.9 ns per spin flip for SW
simulations of several systems in parallel
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Spin glasses

Simulate Edwards-Anderson model on GPU:
same domain decomposition (checkerboard)
slightly bigger effort due to non-constant couplings
higher performance due to larger independence?
very simple to combine with parallel tempering
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Spin glass: performance
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Spin glass: performance
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Spin glasses: continued

Seems to work well with

15 ns per spin flip on CPU

180 ps per spin flip on GPU

but not better than ferromagnetic Ising model.
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Further improvement: use multi-spin coding

Synchronous multi-spin coding: different spins in a single configurations in one
word

Asynchronous multi-spin coding: spins from different realizations in one word
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Spin glasses: continued

Seems to work well with

15 ns per spin flip on CPU

180 ps per spin flip on GPU

but not better than ferromagnetic Ising model.

Further improvement: use multi-spin coding

Synchronous multi-spin coding: different spins in a single configurations in one
word

Asynchronous multi-spin coding: spins from different realizations in one word

⇒ brings us down to about 15 ps per spin flip
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Janus

JANUS, a modular massively parallel and reconfigurable FPGA-based computing
system.
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Janus

JANUS, a modular massively parallel and reconfigurable FPGA-based computing
system.

Costs:

Janus: 256 units, total cost about 700, 000 Euros

Same performance with GPU: 64 PCs (2000 Euros) with 2 GTX 295 cards (500
Euros)⇒ 200, 000 Euros

Same performance with CPU only (assuming a speedup of ∼ 50): 800 blade
servers with two dual Quadcore sub-units (3500 Euros)⇒ 2, 800, 000 Euros
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Outlook
Conclusions:

GPGPU promises significant speedups at moderate coding effort
Requirements for good performance:

large degree of locality⇒ domain decomposition
suitability for parallelization (blocks) and vectorization (threads)
total number of threads much larger than processing units (memory latency)
opportunity for using shared memory⇒ performance is memory limited
ideally continuous variables

⇒ maximum speed-up ∼ 500

effort significantly smaller than for special-purpose machines
GPGPU might be a fashion, but CPU computing goes the same way
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