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Motivation

conformal field theory (CFT) allows for a complete
classification of (pure) critical systems in two dimensions

disordered systems, however, are not translationally (and thus
conformally) invariant → no CFT results

Schramm Loewner evolution (SLE) describes critical curves
such as domain boundaries, with implications that might go
beyond CFT

first observations of consistency with SLE in random systems:

2D ±J Ising spin glass (Amoruso et al., 2006; Bernard et al.,
2007)
3-state random-bond Potts model (Jacobsen et al., 2009)
disordered SOS model (Schwarz et al., 2009)
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Conformal invariance

Conformal map

a function f : U → V which
preserves angles between curves

Riemann mapping theorem

in 2 dimensions there exists a
conformal map between any two
simply connected domains
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Loewner evolution

Relation between a 1D function and a curve in 2D via
conformal mapping

Curve is “extruded” into the upper half plane from the origin

animation
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Schramm (stochastic) Loewner evolution

Loewner evolution

ξt : one dimensional
function

←→ γ: Curve in the plane

Schramm (stochastic) Loewner evolution

ξt is a Brownian
motion with diffusion
constant κ

←→

The generated family
of curves γ is
conformally invariant
and satisfies the
domain Markov
property
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Random field Ising model

H = −J
∑

ij si sj −
∑

i hi si

RFIM

hi : Gaussian quenched disorder

∆: disorder strength

H: mean (external) field

spin clusters grow with decreasing
∆ and increasing H

no thermodynamic transition in
2D

∆ = 1

∆ = 2
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Ground-state computations: use graph theory

Maximum flow problem: find the minimum cut (bottlenecks)

Each link has maximum capacity
cij

Statistical mechanics solution:
minimize an “energy” function

H =
∑

ij si (1− sj )cij si ∈ {0, 1}

H = −
∑

ij cijsi sj +
∑

i

(∑
j cij

)
si

exactly analogous to the RFIM
Hamiltonian

Graph theory algorithm

polynomial in time

no ambiguity about
solution
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Zero temperature phase diagram
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Geometric critical behavior

H < Hc (∆): spin clusters are finite

H > Hc (∆): spin clusters diverge

(Seppälä and Alava, PRE 2001)

( Környei and Iglói, PRE 2007)
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Ground state spin configuration
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SLE numerical evidence

SLE preconditions

1 conformal invariance

transformation properties between different domains
( Környei and Iglói, PRE 2007)

2 domain Markov property

proven

SLE predictions

1 fractal dimension

2 left passage probability

3 is the driving function Brownian motion?

Jacob Stevenson Domain wall’s and SLE



Motivation
Schramm Loewner evolution

Random field Ising model
Evidence domain walls are SLE’s

Fractal dimension
Left passage probability
Brownian motion

SLE numerical evidence

SLE preconditions

1 conformal invariance

transformation properties between different domains
( Környei and Iglói, PRE 2007)
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fractal dimension

SLEκ prediction: df = 1 + κ/8
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fractal dimension
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Schramm’s left passage probability

The probability a curve passes to the left of point (x , y)

The probability is known exactly for SLE curves in the upper
half plane

Strategy: do simulations on a finite geometry then use
conformal map to test against the exact formula

Bonus: acts as a check of conformal invariance
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circle geometry
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square geometry
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Is the generating function Brownian motion?

points give the distribution of the driving function after
“time” t
solid lines are Gaussian curves with variance κ ∗ t with κ = 6
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Conclusions

Domain walls in the RFIM satisfy Schramm Loewner evolution
with κ = 6

evidence

X fractal dimension

X left passage probability

X is the driving function Brownian motion?

implications

1 conformal invariance

2 other disordered systems?
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Definition: domain Markov property

Domain Markov property

Given a domain D, boundary points a and c , and b a point on the
interior of the domain, then the probability of curve γbc given
curve γab is the same as the probability of γbc on a domain
excluding the curve γab

P(γbc ∈ D|γab) = P(γbc ∈ (D \ γbc))
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deviation from exact left passage as a function of κ
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inset

symmetry
relation
πv + πh = 1
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inset

deviation
from “exact”
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