Domain walls and Schramm Loewner evolution in the Random Field Ising Model

Jacob Stevenson

Uni-Mainz

November, 2010, Leipzig

Motivation

Schramm Loewner evolution Random field Ising model Evidence domain walls are SLE's

Outline

1 Motivation

- 2 Schramm Loewner evolution
 - definition
 - examples
- 3 Random field Ising model
 - Introduction
 - Ground-state computations
 - Domain walls

④ Evidence domain walls are SLE's

- Fractal dimension
- Left passage probability
- Brownian motion

A ₽

Motivation

- conformal field theory (CFT) allows for a complete classification of (pure) critical systems in two dimensions
- \bullet disordered systems, however, are not translationally (and thus conformally) invariant \to no CFT results
- Schramm Loewner evolution (SLE) describes critical curves such as domain boundaries, with implications that might go beyond CFT
- first observations of consistency with SLE in random systems:
 - 2D $\pm J$ Ising spin glass (Amoruso et al., 2006; Bernard et al., 2007)
 - 3-state random-bond Potts model (Jacobsen et al., 2009)
 - disordered SOS model (Schwarz et al., 2009)

definition examples

Outline

Motivation

- 2 Schramm Loewner evolution
 - definition
 - examples
- 3 Random field Ising model
 - Introduction
 - Ground-state computations
 - Domain walls

4 Evidence domain walls are SLE's

- Fractal dimension
- Left passage probability
- Brownian motion

(4日) (4日)

definition examples

Conformal invariance

Conformal map

a function $f: U \rightarrow V$ which preserves angles between curves

Riemann mapping theorem

in 2 dimensions there exists a conformal map between any two simply connected domains

definition examples

Loewner evolution

- Relation between a 1D function and a curve in 2D via conformal mapping
- Curve is "extruded" into the upper half plane from the origin

・ロト ・回ト ・ヨト

definition examples

Loewner evolution

- Relation between a 1D function and a curve in 2D via conformal mapping
- Curve is "extruded" into the upper half plane from the origin

animation

・ロト ・回ト ・ヨト

definition examples

Schramm (stochastic) Loewner evolution

Loewner evolution		
ξ_t : one dimensional function	\longleftrightarrow	γ : Curve in the plane

イロト イヨト イヨト イヨト

æ

definition examples

Schramm (stochastic) Loewner evolution

Loewner evolution		
ξ_t : one dimensional function	\longleftrightarrow	γ : Curve in the plane

Schramm (stochastic) Loewner evolution			
ξ_t is a Brownian \longleftrightarrow notion with diffusion \longleftrightarrow constant κ	The generated family of curves γ is conformally invariant and satisfies the domain Markov property		

イロト イヨト イヨト イヨト

definition examples

definition examples

definition examples

Jacob Stevenson

Domain wall's and SLE

э

definition examples

< □ > < □ > < □ > < □ > < □ > .

3

Introduction Ground-state computations Domain walls

Outline

Motivation

- 2 Schramm Loewner evolution
 - definition
 - examples
- 3 Random field Ising model
 - Introduction
 - Ground-state computations
 - Domain walls

4 Evidence domain walls are SLE's

- Fractal dimension
- Left passage probability
- Brownian motion

・ロト ・回ト ・ヨト

Introduction Ground-state computations Domain walls

Random field Ising model

$$H = -J\sum_{ij}s_is_j - \sum_ih_is_i$$

RFIM

- h_i: Gaussian quenched disorder
- Δ : disorder strength
- H: mean (external) field
- spin clusters grow with decreasing Δ and increasing H
- no thermodynamic transition in 2D

$$\Delta = 2$$

・ロト ・回ト ・ヨト

Introduction Ground-state computations Domain walls

Ground-state computations: use graph theory

Jacob Stevenson

Maximum flow problem: find the minimum cut (bottlenecks)

Cij

Each link has maximum capacity

<ロ> <同> <同> <同> < 同>

Introduction Ground-state computations Domain walls

Ground-state computations: use graph theory

Maximum flow problem: find the minimum cut (bottlenecks)

Each link has maximum capacity

A (1) > A (2)

Statistical mechanics solution: minimize an "energy" function

$$egin{aligned} & H = \sum_{ij} s_i (1-s_j) c_{ij} & s_i \in \{0,1\} \ & H = -\sum_{ij} c_{ij} s_i s_j + \sum_i \left(\sum_j c_{ij}\right) s_i \ & ext{exactly analogous to the RFIM} \ & ext{Hamiltonian} \end{aligned}$$

Cij

Ground-state computations Domain walls

Ground-state computations: use graph theory

Maximum flow problem: find the minimum cut (bottlenecks)

Each link has maximum capacity Cij

Statistical mechanics solution: minimize an "energy" function $H=\sum_{ij}s_i(1-s_j)c_{ij}$ $s_i\in\{0,1\}$ $H = -\sum_{ij} c_{ij} s_i s_j + \sum_i \left(\sum_j c_{ij} \right) s_i$

exactly analogous to the RFIM Hamiltonian

Graph theory algorithm

- polynomial in time
- no ambiguity about solution

イロト イヨト イヨト イヨト

Introduction Ground-state computations Domain walls

Zero temperature phase diagram

Geometric critical behavior(Seppälä and Alava, PRE 2001)• $H < H_c(\Delta)$: spin clusters are finite(Környei and Iglói, PRE 2007)• $H > H_c(\Delta)$: spin clusters diverge• $O \in A$

Introduction Ground-state computations Domain walls

Ground state spin configuration

Introduction Ground-state computations Domain walls

Spin cluster boundary

3

Fractal dimension Left passage probability Brownian motion

Outline

1 Motivation

- 2 Schramm Loewner evolution
 - definition
 - examples
- 3 Random field Ising model
 - Introduction
 - Ground-state computations
 - Domain walls

4 Evidence domain walls are SLE's

- Fractal dimension
- Left passage probability
- Brownian motion

・ロト ・回ト ・ヨト

Fractal dimension Left passage probability Brownian motion

SLE numerical evidence

SLE preconditions

conformal invariance

Odmain Markov property

・ロト ・回ト ・ヨト

-∢ ≣ ≯

Fractal dimension Left passage probability Brownian motion

SLE numerical evidence

SLE preconditions

- conformal invariance
 - transformation properties between different domains

(Környei and Iglói, PRE 2007)

・ロト ・回ト ・ヨト

Oddate domain Markov property

proven

Fractal dimension Left passage probability Brownian motion

SLE numerical evidence

SLE preconditions

- conformal invariance
 - transformation properties between different domains

(Környei and Iglói, PRE 2007)

・ロト ・回ト ・ヨト

Oddate domain Markov property

proven

SLE predictions

- fractal dimension
- 2 left passage probability
- is the driving function Brownian motion?

Fractal dimension Left passage probability Brownian motion

fractal dimension

 SLE_κ prediction: $d_f = 1 + \kappa/8$

・ロト ・日本 ・モト ・モト

æ

Fractal dimension Left passage probability Brownian motion

fractal dimension

SLE_{κ} prediction: $d_f = 1 + \kappa/8$

Fractal dimension Left passage probability Brownian motion

Schramm's left passage probability

The probability a curve passes to the left of point (x, y)

- The probability is known exactly for SLE curves in the upper half plane
- Strategy: do simulations on a finite geometry then use conformal map to test against the exact formula
- Bonus: acts as a check of conformal invariance

Fractal dimension Left passage probability Brownian motion

circle geometry

Fractal dimension Left passage probability Brownian motion

square geometry

Deviation from exact formula $\kappa = 6$

magnitude of deviation from schramm's formula

・ロン ・四と ・ヨン ・ヨン

3

Fractal dimension Left passage probability Brownian motion

Is the generating function Brownian motion?

- points give the distribution of the driving function after "time" *t*
- solid lines are Gaussian curves with variance $\kappa * t$ with $\kappa = 6$

Fractal dimension Left passage probability Brownian motion

Conclusions

Domain walls in the RFIM satisfy Schramm Loewner evolution with $\kappa=6$

evidence

- ✓ fractal dimension
- ✓ left passage probability
- ✓ is the driving function Brownian motion?

implications

- conformal invariance
- Other disordered systems?

・ロト ・回ト ・ヨト

Fractal dimension Left passage probability Brownian motion

Fractal dimension Left passage probability Brownian motion

Definition: domain Markov property

Domain Markov property

Given a domain *D*, boundary points *a* and *c*, and *b* a point on the interior of the domain, then the probability of curve γ_{bc} given curve γ_{ab} is the same as the probability of γ_{bc} on a domain excluding the curve γ_{ab}

$$P(\gamma_{bc} \in D | \gamma_{ab}) = P(\gamma_{bc} \in (D \setminus \gamma_{bc}))$$

・ロト ・回ト ・ヨト

Fractal dimension Left passage probability Brownian motion

deviation from exact left passage as a function of κ

- • @ • • • 三

Left passage probability Brownian motion

$$\operatorname{Prob}\left[\underbrace{\overbrace{w}}_{w}h\right] = f\left(\frac{h}{w}\right)$$

Domain wall's and SLE

Jacob Stevenson

inset symmetry relation

 $\pi_v + \pi_h = 1$

Fractal dimension Left passage probability Brownian motion

inset

deviation from "exact"