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Abstract

We determine the classical and quantum complexities of a specific
ensemble of three-satisfiability problems with a unique satisfying
assignment for up to N = 100 and N = 80 variables, respectively.
In the classical case we employ generalized ensemble techniques
and measure the time that a Markovian Monte Carlo process
spends in searching classical ground states. In the quantum case
we determine the maximum finite correlation length along a
quantum adiabatic trajectory that uses constant tranverse field. In
the median of our ensemble both complexities diverge
exponentially with the number of variables. Hence, adiabatic
quantum computation fails to reduce intractable classical
complexity to a polynomial one. Moreover, the growth-rate constant
of the quantum case is 3.8 times as large as the one of the
classical case, making classical fluctuations more beneficial than
quantum fluctuations in ground-sate searches.
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Outline of the Talk.

@ what is QAC ?

e Landau Zener Theory
© what is 3SAT ?
© results for 3SAT

e Markov Chain Monte Carlo (MCMC)
@ Quantum Mass Gap

© conclude
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work in slow progress !
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Landau Zener Theory.

@ a 1932 Proc. Royal Society paper

Non-Adiabatic Crossing of Energy Levels.

By CrareNcE ZENER, National Research Fellow of US.A.

(Communicated by R. H. Fowler, F.R.8.—Reccived July 19, 1932

1. Introduction.

The crossing of energy levels has been a matter of considerable discussion.*
The essential features may be illustrated in the crossing of a polar and homo-
polar state of a molecule.

E,

Ro R>

Fra. 1.—Crossing of polar and homopolar states.
Summary.

When a single parameter is varied adiabatically, two eigenwerte of a system
may approach each other, and then recede, the corresponding eigenfunctions

having excl d their c} 2 If the p is varied with a finite
velocity, the system may jump from one state to the other, thus not suffering
a change of character. This ition probability has been xi ly calcu-

lated provided the system satisfies certain reasonable restrictions.
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Landau Zener Theory..

\ Quantum Adiabatic Evolution \

@ a 2001 Science article:

A Quantum Adiabatic Evolution
Algorithm Applied to Random
Instances of an NP-Complete

Problem

Edward Farhi,’* Jeffrey Goldstone,” Sam Gutmann,?
Joshua Lapan,® Andrew Lundgren,? Daniel Preda’

A quantum system will stay near its instantaneous ground state if the Ham-

D y . ) . A — New Quadratic Fit
iltonian that governs its evolution varies slowly enough. This quantum adiabatic

Median Time to Get Probability 1/8
8
T

-~ Old Quadratic Fit

behavior is the basis of a new class of algorithms for quantum computing. We 10 4
tested one such algorithm by applying it to randomly generated hard instances

of an NP-complete problem. For the small examples that we could simulate, the i 7
quantum adiabatic algorithm worked well, providing evidence that quantum ol L 1 | | L I L L | | 1
computers (if large ones can be built) may be able to outperform ordinary ooz 13M 15 e 17 18 19 20
computers on hard sets of instances of NP-complete problems. Number of Bits
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Landau Zener Theory...

@ adiabatic passage : a system remains in its instantaneous
energy eigenstate if a given perturbation is acting on it slowly
enough, M. Born and V. A. Fock (1928), "Beweis des
Adiabatensatzes"

@ model: single spin in time dependent magnetic field B = B(t)
with Hamiltonian matrix H; ;:

Hi 1 = +uB — hwo/2

Hoo = —puB 4 hwo/2

*

Hio=9 Hy1=g
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Landau Zener Theory....

@ instantaneous energy spectrum

1
_ * _ 2
Ei = —5/499" + (hwo — 2uB)

1
Eo = +5/499" + (hwo — 2uB)?

' the probability of an non-adiabatic
o4 i.e., diabatic passage vanishes in
02 the static limit
LT 2wgg*
o2y S 7 Piabatic = exp[—
k/"}; diabat P[ h || at(E2 _ E1) ||]
085 02 04 06 08 1 (E2 - E1) |min: V 4gg*

T. Neuhaus, JSC More on Quantum Adiabatic Computations (QAC), Blatant Failure of QAC in Transverse Field 3SAT with USA 7127



Landau Zener Theory.....
’ how slow the perturbation must vary such that P,gi.pagc is small ?

@ the scale is set by the minimum energy-gap i.e., mass-gap
Am(B) = E{(B) — Eo(B)
AMyin = ming {Am(B)}
and adiabatic passage is guaranteed when

const
Am?

min

To >>

@ remark: level crossing kills the adiabatic passage: an
avoided level crossing is needed

@ for many degrees of freedom : N it is generic that an zero
temperature quantum phase transition (PT) appears with small
gap values
— 1’st order PT yields exponential small A, (N) o< exp[—cN]
— 2'nd order PT yields polynomial small Ay, (N) oc N~
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Landau Zener Theory......
| Quantum Adiabatic Algorithm |

@ time dependent Schrédinger equation evolves states
[W(t) > et 06y 1) >

@ map bits b; = 0, 1 of a classical computer to quantum Pauli spins
bi = (1 + o7)/2 with a |¥(t) > that has 2" complex components
for N spins

@ Quantum Adiabatic Hamiltonian
Hoa=[1—MNHp+ Hp 0< A< 1

- A\ : quantum adiabatic control parameter with schedule

- driver Hamiltonian Hp = — >, o i.e., transverse field
- problem Hamiltonian Hp := Hp(o7)
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Landau Zener Theory.......

‘ Quantum Adiabatic Algorithm ‘

(*]

(*]

T. Neuhaus, JSC

quantum adiabatic algorithm solves for the classical ground state
of the problem Hamiltonian Hp := Hp(o7)

by, first building a configurable nano fabricated device in nature
that has a Hga (science fiction now)

by second, putting there a ground-state of Hp
- note the spectrum and all wave-functions are known

by third, performing an adiabatic transition from the ground-state
of Hp to the ground-state of Hp in time 7

it looks more like an experiment, rather than an actual
computation

in fact it is a model of quantum computation without Q-bits
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Landau Zener Theory........
| Quantum Adiabatic Algorithm |

@ the spectrum of Hg, for 6 spins and a 3 SAT Hamiltonian

6 1 1 1 1 1 1 1 1 1
0O 01 02 03 04 05 06 07 08 09 1
LAMBDA

- note the avoided level crossing at the finite N QPT
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Landau Zener Theory.........

‘ Quantum Adiabatic Algorithm ‘

@ there is the freedom to change the driver Hamiltonian (it should
not commute with the problem Hamiltonian)

@ there is the freedom to change the problem Hamiltonian if the
ground-state stays the same

@ there is the freedom to change the path in Zoa (5, \)

@ there is the freedom to reformulate the problem via
polynomial reduction by a "change of basis”

@ there is the freedom to relax the adiabatic condition and correct
for it i.e., Jarzynski equality

@ but : there is no way to change the Schrédinger wave function
dynamics for general Hamiltonian’s of Pauli spins
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Landau Zener Theory..........

’ Quantum Adiabatic Algorithm ‘

@ statistical field theory corollary : two parametric QAC partition
function at finite temperature 7 = 3!

Zoa(B,\) = Tr < W | @ PO NHoHARRL |y

- mathematica script for the eigenvalues

- Lanczos for the eigenvalues

- Trotter Suzuki Monte Carlo at imaginary time

- brute force Schrédinger wave function dynamics

@ at the point P* = (T, \) = (0, 1) quantum and thermal
fluctuations are frozen ; and the most probable state is the
ground-state to Hp

@ determine Instanton free energy at the presumed
quantum/thermal phase transition line, that separates P* from
high temperature and/or small A
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What is 3 Sat ?.

problems and ground-states ?

@ in physics: the ground state mostly is boring, up to
- random disorder, spin glasses
- ice , ice models
- dense packing e.g., liquid crystals, fully packed loop models
- there can be phase transitions over an ensemble of ground
states

@ in mathematics:
- satisfiability problems: exact cover, KSAT, etc

@ NP-hard or NP-complete typical run-time

T < e*N J

- w = rate constant w < In2 (classical) w < (In2)/2 (quantum
Grover)
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What is 3 Sat ?..

@ and even the problem a identifying string theory vacua from a

T. Neuhaus, JSC

space of 1059 different vacua is NP-complete

F. Denef, M. R. Douglas, "Computational complexity of the
landscape: Part | ”, Ann. of Phys. 322, Issue 5, (2007) 1096.

"We study the computational complexity of the physical problem
of finding vacua of string theory which agree with data, such as
the cosmological constant, and show that such problems are
typically NP hard. In particular, we prove that in the Bousso
Polchinski model, the problem is NP complete. We discuss the
issues this raises and the possibility that, even if we were to find
compelling evidence that some vacuum of string theory
describes our universe, we might never be able to find that
vacuum explicitly. In a companion paper, we apply this point of
view to the question of how early cosmology might select a
vacuum.”
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What is 3 Sat ?...

@ 3SAT is the mother of all Complexity Theories, like the Ising
model is for magnets

@ given three Ising spins, the three point function

1
3
Mtause (S1, 82, S3) = 5(2 — 851 —Sp—S3+ 5152+ 5153+ 5283 — 515253)

only is one h3,, .. = 1if sy = so = s3 = —1, otherwise it is zero
@ Ising spin version of clause: by V bo V bg

@ M clauses + logical negation on a set N spins/bits in conjunctive
normal form

CNF = (b, Vba, Vbay)/\(bg, Vbs, Vbg, ) A(by, Vb, Vb, ) A...(M clauses)

can the CNF be satisfied ?
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What is 3 Sat ?....

Intractable !

@ Ising Hamiltonian on sy, ..., Sy

M
3
HP = Z hClause(eOM SOM » €ap Sa27 €ag Sas)

a=1

with €,, = £1 for i = 1,2, 3 chosen at random
a choice of the index array «j, i =1,2,3fora = 1,..., M and of
€q, 1S called a realization, we use 1000 realizations

@ realizations at M/N = 5,8

@ forced unique satisfying assignments (USA): number of ground
states at Hp = 0 exactly one
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What is 3 Sat ?.....

@ asingle N =8 M = 64 realization
(1,4,-8,7) (2,3,2,4) (3,6,5,-7) (4,6,-1,5) (5,-3,-5,7) (6,7,8,3)
(7,-1,-2,-6) (8,5,6,2) (9,4,1,8) (10,-3,1,4) (11,-1,-4,5) (12,8,4,1)
(13,- 8, ,7) (14,-5,-8,-1) (15,-3,2,4) (16,-1,-3,7) (17,-1,2,-8)
(18,5,-7,-3) (19,8,-7,5) (20,-8,7,5) (21,7,6,-4) (22,-7,-1,6)
(23,-6,-1,-7) (24,-6,1,-3) (25,4,2,3) (26,6,1,7) (27,3,-6,-5)
(28,6,5,-4) (29,6,8,-2) (30,-5,-8,-3) (31,-8,2,1) (32,6,3,8)
(38,2,3,5) (34,8,-2,5) (35,6,5,-3) (36,-4,-5,-8) (37,-7,1,8)
(38,-7,-3,4) (39,-2,-7,8) (40,-2,-5,4) (41,-6,-2,8) (42,7,-5,-2)
(43,3,7,6) (44,-1,-5,3) (45,4,-6,3) (46,-3,1,4) (47,4,3,-5)
(48,-3,7,5) (49,2,-8,-5) (50,1,2,3) (51,2,8,6) (52,3,2,-5) (53,8,2,-6)
(54,-7,-2,-3) (55,-6,-1,-2) (56,-1,4,-8) (57,-7,8,1) (58,-4,-2,7)
(59,3,6,7) (60,4,-7,-1) (61,1,-7,2) (62,1,-3,-5) (63,-8,-4,-3)
(64,-2,8,4)

@ has the unique satisfying ground-state: | 01010111 >
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Random 3 SAT interludium.

- as(K = 3) = 4.26675(15):
- Parisi; Science 2002, 1RSB so-
lution Py
- Borgs 1999, A x N=7 wif 1N
- D. Wilson, 2002, 7 > 2 Ve
- data for N=50,100,200 '

as | 4 42| aa a5 as 5
a S 5
0.04 T T T T T T 0.2
0.035 ,
q
b
0.03 ° 015
a@
o
0.025 2 o
A 002 Aot 2o o
& & p-S ® o
Y oois s 2 2 @
. o
0.05 =
0.01 T “a
0.005
®
°] 0
oR {A y-$
38 4 42 a4 46 48 5 38 4 42 44 a6 48
o= M/N o= M/N

Figure: Left: Ground-state energy < ey >. Right: Ground-state entropy
< §p >
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Random 3 SAT interludium..

a = 4.0 large scale

Overlap = [2/N/go/(do — ] < Y '[87gsc: 51 gso] >

ha,B>o

parallel tempering

Hartmann 2010

25

counts

P(Overlap)

= I
/ 04 3 X 07
05 | N =64 overlap

T ) ) ‘ ‘ FIG. 13: Overlap () of solutions in clusters found by Ballistic Net-
0 working, for ot = 4.0. For {r) < 0.4 the curves are essentially zero

0.4 0.5 0.6 0.7 0.8 0.9 1
Overlap
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USA search landscape via density of states.

o0, E) =N E) S5 (H — E)6' (0~ ;3 5i5gec)

conf

contour plot of p(v, E) on two easy/hard realizations

-4 1 —
6 Hard
-8 05 | B
-10
= 12 = 0
-14
-05 m
-16
-18
= L L L L L L L
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
E E

the vertical line denotes E at Cy max

T. Neuhaus, JSC More on Quantum Adiabatic Computations (QAC), Blatant Failure of QAC in Transverse Field 3SAT with USA

21/27



Spin Glass landscape via density of states.
Iba, Takahashi 2004

Pyla) o exp (_J’ Z .F,-_l,;_.r,-u_ju'k) _
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Fig. 1. Density of States: log D{£, M) Fig. 2. Multicanonical Density: log D{M |E)
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MCMC search complexity in 3 SAT with USA.

random walk in energy, i.e. Multicanonical Ensemble sim.

o+ In[rd/N?]

0150

DS

20 30 40 50 60 70 80 90 100
N

Figure: Logarithmized search time < 70/N? > (triangles) and the nucleation
barrier < By > (circles). Two data-sets at M/N = 8 (open symbols) and at
M/N = 5 (full symbols). All data are consistent with an exponential
singularity (< 7s >, < By >) o exp[+wN]. Numerical values:

w(M/N =5) = 0.078(1) ~ In2/9 and w(M/N = 8) = 0.016(1) ~ In2/43.

T. Neuhaus, JSC More on Quantum Adiabatic Computations (QAC), Blatant Failure of QAC in Transverse Field 3SAT with USA 23/27



Signature of the Quantum Phase Transition.

using Trotter Susuki time regularization of the quantum system and
extensive parallel tempering simulations in A

:
0.8 | V4
¢ 0.24 ——————11
0.23 |
0.6 | P
0.22 [y
0.21 |
0a e - o2t
S = o019}
0.2 0.18
017 |
0l 0.16 -
ool -20 0 204060801002040
’ /\* T
04 l
03 04 05 06 07 08 09 1
A

Figure: First order phase transition jump in ground state overlap ¢ as a
function of A. Inset: Correlator () at \*, that determines the inverse gap,
i.e. tunneling correlation length on a N = 256 box.
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Quantum search complexity in 3 SAT with USA.

=
IGAP >
o
j 1
InAMGAp

[=REI \ VIV o))

In < AM,

1 ! ! ! ! ! ! !
10 20 30 40 5 60 70 80 90

N

Figure: maximal AMg,»(< Bo >) as a function of N in logarithmic ordinate
scale for N as large as N = 80 (with a correlation length as large as

& = 259.9). In 3 SAT there is an indisputable exponential singularity with a
rate constant w = 0.061(1) ~ In2/12 at M/N = 8.
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Conclusion.

@ first order Quantum phase transition in 3SAT with USA with
transverse field yielding exponential large quantum search
complexity in the Median, which actually behaves worst 12/44,
than a classical/thermal random search in energy !

@ calculation in 3 SAT at N = 80 , related work has been done by
P. Young et. al. in exact cover at N = 256, PRL 2010

First-Order Phase Transition in the Quantum Adiabatic Algorithm

A.P. Young
Department of Physics, University of California, Santa Cruz, California 95064, USA

S. Knysh
ELORET Corporation, NASA Ames Research Center, MS 229, Moffett Field, California A 94035-1000, USA

V.N. Smelyanskiy
NASA Ames Research Center, MS 269-3, Moffett Field, California 940351000, USA
(Received 8 October 2009: published 14 January 2010)

We simulate the quantum adiabatic algorithm (QAA) for the exact cover problem for sizes up to N =
256 using quantum Monte Carlo simulations incorporating parallel tempering. At large N, we find that
some instances have a discontinuous (first-order) quantum phase transition during the evolution of the
QAA. This fraction increases with increasing N and may tend to 1 for N = oo,
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Conclusion..

@ it is too early to draw final conclusions for all of the NP problems
and for all versions of the QAC algorithm

@ paper: T. Neuhaus, M. Peschina, K. Michielsen and H. de Raedt,
"Classical and Quantum Annealing in the Median of Three
Satisfiability” submitted to PRA.

@ current study: polynomial reduction of 3 SAT to maximum
independent set (MIS)

— dense packing of hard spheres/atoms on a graph at radius
1<r<2
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