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Abstract

We determine the classical and quantum complexities of a specific
ensemble of three-satisfiability problems with a unique satisfying
assignment for up to N = 100 and N = 80 variables, respectively.
In the classical case we employ generalized ensemble techniques
and measure the time that a Markovian Monte Carlo process
spends in searching classical ground states. In the quantum case
we determine the maximum finite correlation length along a
quantum adiabatic trajectory that uses constant tranverse field. In
the median of our ensemble both complexities diverge
exponentially with the number of variables. Hence, adiabatic
quantum computation fails to reduce intractable classical
complexity to a polynomial one. Moreover, the growth-rate constant
of the quantum case is 3.8 times as large as the one of the
classical case, making classical fluctuations more beneficial than
quantum fluctuations in ground-sate searches.
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Outline of the Talk.

1 what is QAC ?
Landau Zener Theory

2 what is 3SAT ?
3 results for 3SAT

Markov Chain Monte Carlo (MCMC)
Quantum Mass Gap

4 conclude

work in slow progress !

T. Neuhaus, JSC More on Quantum Adiabatic Computations (QAC), Blatant Failure of QAC in Transverse Field 3SAT with USA 3/27



Outline of the Talk.

1 what is QAC ?
Landau Zener Theory

2 what is 3SAT ?
3 results for 3SAT

Markov Chain Monte Carlo (MCMC)
Quantum Mass Gap

4 conclude

work in slow progress !

T. Neuhaus, JSC More on Quantum Adiabatic Computations (QAC), Blatant Failure of QAC in Transverse Field 3SAT with USA 3/27



Landau Zener Theory.

a 1932 Proc. Royal Society paper
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Landau Zener Theory..

Quantum Adiabatic Evolution

a 2001 Science article:
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Landau Zener Theory...

adiabatic passage : a system remains in its instantaneous
energy eigenstate if a given perturbation is acting on it slowly
enough, M. Born and V. A. Fock (1928), "Beweis des
Adiabatensatzes"
model: single spin in time dependent magnetic field B = B(t)
with Hamiltonian matrix Hi,j :

H1,1 = +µB − ~ω0/2

H2,2 = −µB + ~ω0/2

H1,2 = g H2,1 = g∗
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Landau Zener Theory....
instantaneous energy spectrum

E1 = −1
2

√
4gg∗ + (~ω0 − 2µB)2

E2 = +
1
2

√
4gg∗ + (~ω0 − 2µB)2
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the probability of an non-adiabatic
i.e., diabatic passage vanishes in
the static limit

Pdiabatic = exp[− 2πgg∗

~ || ∂t (E2 − E1) ||
]

(E2 − E1) |min=
√

4gg∗
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Landau Zener Theory.....
how slow the perturbation must vary such that Padiabatic is small ?

the scale is set by the minimum energy-gap i.e., mass-gap

∆m(B) = E1(B)− E0(B)

∆mmin = minB {∆m(B)}

and adiabatic passage is guaranteed when

T0 >>
const

∆m2
min

remark: level crossing kills the adiabatic passage: an
avoided level crossing is needed
for many degrees of freedom : N it is generic that an zero
temperature quantum phase transition (PT) appears with small
gap values
→ 1’st order PT yields exponential small ∆mmin(N) ∝ exp[−cN]
→ 2’nd order PT yields polynomial small ∆mmin(N) ∝ N−α
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Landau Zener Theory......
Quantum Adiabatic Algorithm

time dependent Schrödinger equation evolves states

|Ψ(t) > e
i
h HQA(t)(t−t0)|Ψ(t0) >

map bits bi = 0,1 of a classical computer to quantum Pauli spins
bi = (1 + σz

i )/2 with a |Ψ(t) > that has 2N complex components
for N spins
Quantum Adiabatic Hamiltonian

HQA = [1− λ]HD + λHP 0 ≤ λ ≤ 1

- λ : quantum adiabatic control parameter with schedule

λ(t) =
t
T0

0 ≤ t ≤ T0

- driver Hamiltonian HD = −
∑

i σ
x
i i.e., transverse field

- problem Hamiltonian HP := HP(σz
i )
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Landau Zener Theory.......

Quantum Adiabatic Algorithm

quantum adiabatic algorithm solves for the classical ground state
of the problem Hamiltonian HP := HP(σz

i )

by, first building a configurable nano fabricated device in nature
that has a HQA (science fiction now)
by second, putting there a ground-state of HD
- note the spectrum and all wave-functions are known
by third, performing an adiabatic transition from the ground-state
of HD to the ground-state of HP in time T0

it looks more like an experiment, rather than an actual
computation
in fact it is a model of quantum computation without Q-bits
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Landau Zener Theory........
Quantum Adiabatic Algorithm

the spectrum of HQA for 6 spins and a 3 SAT Hamiltonian
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- note the avoided level crossing at the finite N QPT
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Landau Zener Theory.........

Quantum Adiabatic Algorithm

there is the freedom to change the driver Hamiltonian (it should
not commute with the problem Hamiltonian)
there is the freedom to change the problem Hamiltonian if the
ground-state stays the same
there is the freedom to change the path in ZQA(β, λ)

there is the freedom to reformulate the problem via
polynomial reduction by a ”change of basis”
there is the freedom to relax the adiabatic condition and correct
for it i.e., Jarzynski equality
but : there is no way to change the Schrödinger wave function
dynamics for general Hamiltonian’s of Pauli spins

T. Neuhaus, JSC More on Quantum Adiabatic Computations (QAC), Blatant Failure of QAC in Transverse Field 3SAT with USA 12/27



Landau Zener Theory..........

Quantum Adiabatic Algorithm

statistical field theory corollary : two parametric QAC partition
function at finite temperature T = β−1

ZQA(β, λ) = Tr < Ψ | e−β{(1−λ)HD+λHP ]} | Ψ >

- mathematica script for the eigenvalues
- Lanczos for the eigenvalues
- Trotter Suzuki Monte Carlo at imaginary time
- brute force Schrödinger wave function dynamics
at the point P∗ = (T , λ) = (0,1) quantum and thermal
fluctuations are frozen ; and the most probable state is the
ground-state to HP

determine Instanton free energy at the presumed
quantum/thermal phase transition line, that separates P∗ from
high temperature and/or small λ
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What is 3 Sat ?.

Intractable !
problems and ground-states ?

in physics: the ground state mostly is boring, up to
- random disorder, spin glasses
- ice , ice models
- dense packing e.g., liquid crystals, fully packed loop models
- there can be phase transitions over an ensemble of ground
states
in mathematics:
- satisfiability problems: exact cover, KSAT, etc
NP-hard or NP-complete typical run-time

τ ∝ eωN

- ω := rate constant ω ≤ ln2 (classical) ω ≤ (ln2)/2 (quantum
Grover)
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What is 3 Sat ?..
Intractable !

and even the problem a identifying string theory vacua from a
space of 10500 different vacua is NP-complete

F. Denef, M. R. Douglas, ”Computational complexity of the
landscape: Part I ”, Ann. of Phys. 322, Issue 5, (2007) 1096.

”We study the computational complexity of the physical problem
of finding vacua of string theory which agree with data, such as
the cosmological constant, and show that such problems are
typically NP hard. In particular, we prove that in the Bousso
Polchinski model, the problem is NP complete. We discuss the
issues this raises and the possibility that, even if we were to find
compelling evidence that some vacuum of string theory
describes our universe, we might never be able to find that
vacuum explicitly. In a companion paper, we apply this point of
view to the question of how early cosmology might select a
vacuum.”
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What is 3 Sat ?...

Intractable !

3SAT is the mother of all Complexity Theories, like the Ising
model is for magnets
given three Ising spins, the three point function

h3
Clause(s1, s2, s3) =

1
8

(2−s1−s2−s3 +s1s2 +s1s3 +s2s3−s1s2s3)

only is one h3
Clause = 1 if s1 = s2 = s3 = −1, otherwise it is zero

Ising spin version of clause: b1 ∨ b2 ∨ b3

M clauses + logical negation on a set N spins/bits in conjunctive
normal form

CNF = (bα1∨bα2∨bα3 )∧(bβ1∨bβ2∨bβ3 )∧(bγ1∨bγ2∨bγ3 )∧...(M clauses)

can the CNF be satisfied ?
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What is 3 Sat ?....

Intractable !

Ising Hamiltonian on s1, ..., sN

HP =
M∑
α=1

h3
Clause(εα1sα1 , εα2sα2 , εα3sα3 )

with εαi = ±1 for i = 1,2,3 chosen at random
a choice of the index array αi , i = 1,2,3 for α = 1, ...,M and of
εαi is called a realization, we use 1000 realizations
realizations at M/N = 5,8
forced unique satisfying assignments (USA): number of ground
states at HP = 0 exactly one
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What is 3 Sat ?.....

a single N = 8 M = 64 realization
(1,4,-8,7) (2,3,2,4) (3,6,5,-7) (4,6,-1,5) (5,-3,-5,7) (6,7,8,3)
(7,-1,-2,-6) (8,5,6,2) (9,4,1,8) (10,-3,1,4) (11,-1,-4,5) (12,8,4,1)
(13,-8,3,7) (14,-5,-8,-1) (15,-3,2,4) (16,-1,-3,7) (17,-1,2,-8)
(18,5,-7,-3) (19,8,-7,5) (20,-8,7,5) (21,7,6,-4) (22,-7,-1,6)
(23,-6,-1,-7) (24,-6,1,-3) (25,4,2,3) (26,6,1,7) (27,3,-6,-5)
(28,6,5,-4) (29,6,8,-2) (30,-5,-8,-3) (31,-8,2,1) (32,6,3,8)
(33,2,3,5) (34,8,-2,5) (35,6,5,-3) (36,-4,-5,-8) (37,-7,1,8)
(38,-7,-3,4) (39,-2,-7,8) (40,-2,-5,4) (41,-6,-2,8) (42,7,-5,-2)
(43,3,7,6) (44,-1,-5,3) (45,4,-6,3) (46,-3,1,4) (47,4,3,-5)
(48,-3,7,5) (49,2,-8,-5) (50,1,2,3) (51,2,8,6) (52,3,2,-5) (53,8,2,-6)
(54,-7,-2,-3) (55,-6,-1,-2) (56,-1,4,-8) (57,-7,8,1) (58,-4,-2,7)
(59,3,6,7) (60,4,-7,-1) (61,1,-7,2) (62,1,-3,-5) (63,-8,-4,-3)
(64,-2,8,4)
has the unique satisfying ground-state: | 01010111 >
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Random 3 SAT interludium.
- αs(K = 3) = 4.26675(15):
- Parisi; Science 2002, 1RSB so-
lution
- Borgs 1999, ∆α ∝ N−ν̃

- D. Wilson, 2002, ν̃ ≥ 2
- data for N=50,100,200
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Random 3 SAT interludium..
α = 4.0 large scale

Overlap = [2/N/g0/(g0 − 1)] <
∑

i,α,β>α

δ1[sαi,gsc , s
β
i,gsc ] >

parallel tempering
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USA search landscape via density of states.

ρ(ψ,E) = N−1(E)
∑
conf

δ1(H − E)δ1(ψ − 1
N

∑
i

sisi,gsc)

contour plot of ρ(ψ,E) on two easy/hard realizations
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Spin Glass landscape via density of states.
Iba, Takahashi 2004
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MCMC search complexity in 3 SAT with USA.
random walk in energy, i.e. Multicanonical Ensemble sim.
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Figure: Logarithmized search time < τ 0
s /N2 > (triangles) and the nucleation

barrier < B0 > (circles). Two data-sets at M/N = 8 (open symbols) and at
M/N = 5 (full symbols). All data are consistent with an exponential
singularity (< τs >,< B0 >) ∝ exp[+ωN]. Numerical values:
ω(M/N = 5) = 0.078(1) ≈ ln2/9 and ω(M/N = 8) = 0.016(1) ≈ ln2/43.
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Signature of the Quantum Phase Transition.
using Trotter Susuki time regularization of the quantum system and

extensive parallel tempering simulations in λ
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Quantum search complexity in 3 SAT with USA.
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scale for N as large as N = 80 (with a correlation length as large as
ξ = 259.9). In 3 SAT there is an indisputable exponential singularity with a
rate constant ω = 0.061(1) ≈ ln2/12 at M/N = 8.

T. Neuhaus, JSC More on Quantum Adiabatic Computations (QAC), Blatant Failure of QAC in Transverse Field 3SAT with USA 25/27



Conclusion.

first order Quantum phase transition in 3SAT with USA with
transverse field yielding exponential large quantum search
complexity in the Median, which actually behaves worst 12/44,
than a classical/thermal random search in energy !
calculation in 3 SAT at N = 80 , related work has been done by
P. Young et. al. in exact cover at N = 256, PRL 2010
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Conclusion..

it is too early to draw final conclusions for all of the NP problems
and for all versions of the QAC algorithm
paper: T. Neuhaus, M. Peschina, K. Michielsen and H. de Raedt,
”Classical and Quantum Annealing in the Median of Three
Satisfiability” submitted to PRA.
current study: polynomial reduction of 3 SAT to maximum
independent set (MIS)

→ dense packing of hard spheres/atoms on a graph at radius
1 < r < 2
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