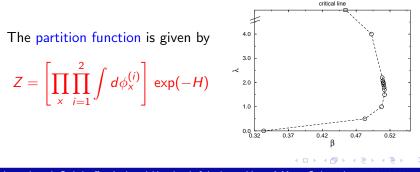
The thermodynamic Casimir effect in the neighbourhood of the λ -transition: A Monte Carlo study

Martin Hasenbusch

Institut für Physik, Humboldt-Universität zu Berlin

CompPhys10, Leipzig, 25 November 2010

The thermodynamic Casimir effect in the neighbourhood of the λ -transition: A Monte Carlo study


Overview

- An improved lattice model
- Finite size scaling of the thermodynamic Casimir force
- Numerical results
- Comparison with other MC studies, field theory and experiment

2-component ϕ^4 model:

$$H = -\beta \sum_{x,\mu} \vec{\phi}_x \vec{\phi}_{x+\hat{\mu}} + \sum_x \left[\vec{\phi}_x^2 + \lambda (\vec{\phi}_x^2 - 1)^2 \right]$$

where the field variable $\vec{\phi}_x$ is a vector with 2 real components. *x* is a site on a simple cubic lattice and $\hat{\mu}$ a unit vector in μ direction. $\lambda = 0$: Gaussian model; $\lambda \to \infty$: XY model.

The thermodynamic Casimir effect in the neighbourhood of the λ -transition: A Monte Carlo study

The correlation length behaves as

$$\xi = \xi_{0,\pm}(\lambda) \; |t|^{-
u} \; \; (1+c(\lambda)t^{ heta}+...)$$

where $t = \beta_c - \beta$ is the reduced temperature. $\theta = \nu \omega \approx 0.5$ is the exponent of leading corrections.

The improved model: $c(\lambda^*) = 0$ Numerically: $\lambda^* = 2.15(5)$

Here we study $\lambda = 2.1$:

 $\beta_c = 0.5091503(6)$ $\xi_{0,+} = 0.26362(8)$ $\left| \frac{c(2.1)}{c(XY)} \right| \lesssim \frac{1}{30}$

The thermodynamic Casimir effect in the neighbourhood of the λ -transition: A Monte Carlo study

イロト イロト イヨト イヨト

Film geometry:

System is finite in one direction and infinite in the other two In our simulations: $L_0 \ll L_1 = L_2$

The range of fluctuations is characterized by the correlation length ξ . For $L_0 \leq \xi$ fluctuations are restricted by the geometry of the film

 \implies a force $F_{Casimir}$ per area acts on the walls of the film.

《曰》《聞》《臣》《臣》 三臣

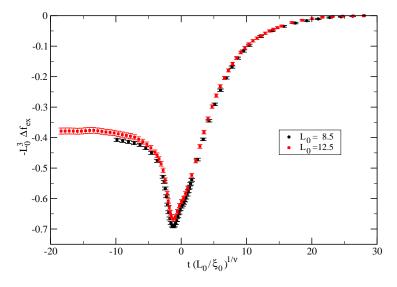
Boundary conditions:

- periodic boundary conditions: theoretically relatively simple; no experimental realization
- free boundary conditions: Dirichlet boundary conditions with vanishing order parameter; relevant for films of ⁴He in the neighbourhood of the λ-transition.

Corrections $\propto L_0^{-1}$; Can be cast into the form $L_{0,eff} = L_0 + L_s$. For our model $L_s = 1.02(7)$. (Obtained from the numerical study of other quantities) The thermal (or critical) Casimir force is given by

$$F_{Casimir} = -\frac{\partial f_{ex}}{\partial L_0}$$

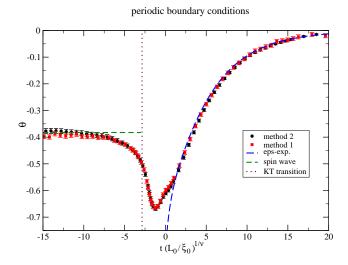
where L_0 is the thickness of the film. The excess free energy per area:


 $f_{ex} = f(L_0) - L_0 f_{bulk}$

Finite size scaling predicts:

$$F_{Casimir} \simeq k_B T L_0^{-3} \theta(t [L_0/\xi_0]^{1/\nu})$$

where the function $\theta(x)$ is universal


periodic boundary conditions

Martin Hasenbusch

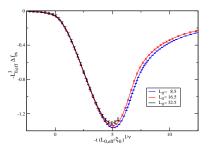
< 67 >

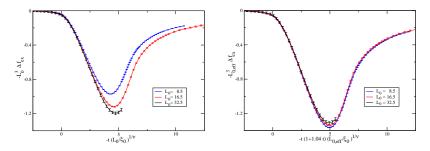
ε-expansion: Krech, Dietrich (1992), Grüneberg, Diehl (2008)

The thermodynamic Casimir effect in the neighbourhood of the λ -transition: A Monte Carlo study

Comparison with Monte Carlo simulations of the XY model:

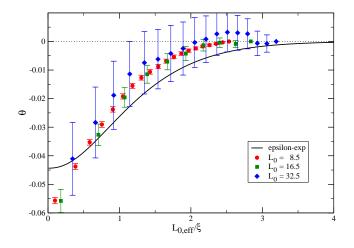
Our result for the minimum of $\theta(x)$: $x_{min} = -1.20(5)$ and $\theta_{min} = -0.66(2)$


At the bulk critical point: $\theta(0) = -0.60(2)$


Vasilyev, Gambassi, Maciolek and Dietrich (2008): Qualitative agreement of the curve with our curve $x_{min} = -0.73(1)$ and $\theta_{min} = -0.633(1)$

 $\theta(0) = -0.5986(14)$

(1日) (日) (日) (日)


Free boundary conditions

The thermodynamic Casimir effect in the neighbourhood of the λ -transition: A Monte Carlo study

ϵ -expansion: Krech and Dietrich (1992)

The thermodynamic Casimir effect in the neighbourhood of the λ -transition: A Monte Carlo study

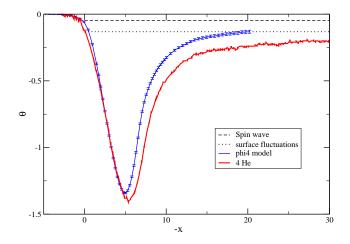
Martin Hasenbusch

< 67 ►

Comparison with Monte Carlo simulations of the XY model:

Our result for the minimum of θ : $x_{min} = -4.95(3)$ and $\theta_{min} = -1.31(1)$

Hucht (2007) Qualitative agreement of the curve with ours $x_{min} = -5.3(1)$ and $\theta_{min} = -1.35(3)$


Vasilyev, Gambassi, Maciolek and Dietrich (2008) Qualitative agreement of the curve with ours $x_{min} = -5.43(2)$ and $\theta_{min} = -1.260(5)$

The thermodynamic Casimir effect in the neighbourhood of the λ -transition: A Monte Carlo study

Martin Hasenbusch

マボン イヨン イヨン 二日

Comparison with experiment: Garcia, Chan (1999), Ganshin, Scheidemantel, Garcia, and Chan (2006)

- M. H., The specific heat, the energy density and the thermodynamic Casimir force in the neighbourhood of the lambda-transition, [arXiv:0907.2847], accepted for publication in Phys.Rev.B
- M. H., Another method to compute the thermodynamic Casimir force in lattice models [arXiv:0908.3582] Phys.Rev.E 80 (2009) 061120
- M. H., The thermodynamic Casimir effect in the neighbourhood of the lambda-transition: A Monte Carlo study of an improved three dimensional lattice model, [arXiv:0905.2096], J. Stat. Mech. (2009) P07031
- M. H., The specific heat of thin films near the lambda-transition: A Monte Carlo study of an improved three-dimensional lattice model, [arXiv:0904.1535] J. Stat. Mech. (2009) P10006

- (目) - (日) - (日)