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Large-deviation properties

Typical properties
(probabilities 10−6..1):
easy to get by simple
sampling simulations

Sometimes wanted:
large deviation properties
(of quenched-disorder
ensembles)
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Examples:

- Biological sequence (protein) alignment:
small-probability (significant) scores [AKH, PRE 2001]

- Distribution of ground-state energies of random magnets
[M. Körner, H.G. Katzgraber, AKH, JSTAT 2006]

- Calculation of partiction functions in statistical mechanics
[AKH, PRL 2005]
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Graphs
Graph G = (V , E)

V : set of vertices

E ⊂ V (2): set of edges
for edge (ij) ∈ E :
i , j are connected

connected components:
transitive closure of
“connectivity relation”

no spacial structure, just
topology

Random graphs:
here: N vertices, each tentative edge (ij) with prob. p.

Erdös-Rényi: (ij) ∈ N(2), p = c/N → finite connectivity c
two-dimensional percolation: (ij) ∈ square lattice, p = const
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Physics Approach
Idea:
model ↔ physical system
quenched realisation ↔ degrees of freedom c (state)
quantity “score” S ↔ energy E(c)

(ground state: often known)
simulate at finite T
Monte Carlo moves:
change realisat. a bit

Simulation at different T
(using (MC)3/PT)
Example
(sequence alignment)
equilibration:
start with ground state/
with random state
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Distribution of Scores

Raw result −→
(simple ↔ T =∞)
at low T :
high scores prefered

MC moves: c → c′

change on “element”
probability = fa
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Pr(acceptance) = min{1, exp(S(c′)/T )
exp(S(c)/T ) } = min{1, e∆S/T}

⇒ equilibrium distribution QT (c) = P(c)eS(c)/T /Z (T )
with P(c) =

∏
i fxi

∏
j fyj , Z (T ) =

∑
c P(c)eS(c)/T

⇒ pT (S) =
∑

c,S(c)=S QT (c) = exp(S/T )
Z (T )

∑
c,S(c)=S P(c)

⇒ p(S) = pT (S)Z (T )e−S/T [AKH, PRE 2001]
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Match Distriutions

[
p(S) = pT (S)Z (T ) exp(−S/T )

]
rescaling with exp(−S/T )
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Z (T ) by “matching”
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agrees with large statistics simple sampling
agrees with (for this example) known exact result
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Results: Erdős-Rényi

Size S of largest component (connectivity c)

[AKH, arXiv:1011.2996 (2010)]
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Rate function Φ(s) ≡ − 1
N log P(s), s = S/N

Comparison with exact asymptotic result
[M. Biskup, L. Chayes, S.A. Smith, Rand. Struct. Alg. 2007]

→ evaluate algorithm → works very well

→ finite-size corrections visible
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Phase transition

Cluster size as function of (artificial) temperature

1st order transition in percolating phase

→ large system sizes not fully accessible
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Two-dimensional percolation

N = L× L, edge density p

No exact result known (to me)

Results comparable to Erdős-Rényi random graphs
but stronger finite-size effects
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Summary

Large-deviation properties

Physics approach:
study system at artificial finite temperature
(or, in principle, Wang-Landau algorithm: here not effcient)

Full distribution of size of largest component

Erdős-Rényi random graphs: matches well analytics
1st order transition in percolating phase

Two dimensional percolation:
comparable to ER model, stronger finite-site effects

[AKH, Practical Guide to Computer Simulations (World Scient., 2009)]

Work more efficiently: read/write/edit scientific paper summaries
www.papercore.org (open access)
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