

A BOINC-based platform for

Scientific Computing

L.A. Fernández

A. Gordillo-Guerrero

V. Martín-Mayor

J.J. Ruiz-Lorenzo

EXTREMADUR/

B

NIVERSIDAD

Introduction

- Volunteer computing.
- Previous experiences.

The IBERCIVIS Project

- Presentation.
- How to use it?

Our experience as scientists

- Our scientific problem.
- Pros and cons of the infrastructure.

Introduction

- Volunteer computing.
- Previous experiences.

The IBERCIVIS Project

- Presentation.
- How to use it?

Our experience as scientists

- Our scientific problem.
- Pros and cons of the infrastructure.

Are you <u>always</u> using 100% of your CPU power?

Are you <u>always</u> using 100% of your CPU power?

Would not it be nice to use idle times of computers all

around the world for Scientific Research?

Are you <u>always</u> using 100% of your CPU power?

Would not it be nice to use idle times of computers all

around the world for Scientific Research?

Volunteer Computing

What is volunteer computing?

"Arrangement in which people (volunteers) provide

computing resources to projects."

Introduction

- Volunteer computing.
- Previous experiences.

The IBERCIVIS Project

- Presentation.
- How to use it?

Our experience as scientists

- Our scientific problem.
- Pros and cons of the infrastructure.

The IBERCIVIS project

Main features

- Durable platform supported by public institutions.
- Professional and stable development team.
- Multidisciplinary projects:
 - Nuclear Fusion
 - Protein Docking
 - Phase transitions
 - Adsorption

- Neuro-degenerative diseases
- Ionizing radiation
 - trajectories.

Continuously opened to new projects.

November 25th 2010

Introduction

- Volunteer computing.
- Previous experiences.

The IBERCIVIS Project

- Presentation.
- How to use it?

Our experience as scientists

- Our scientific problem.
- Pros and cons of the infrastructure.

First Order Phase Transitions in Disordered Systems

In <u>2D</u> the problem is solved:

<u>Aizenman-Wehr theorem</u>:

Dilution Second Order PT

First Order Phase Transitions in Disordered Systems

In <u>2D</u> the problem is solved:

<u>Aizenman-Wehr theorem:</u>

Dilution Second Order PT

In <u>3D</u> the behavior is different: <u>Cardy-Jacobsen mapping</u>: Tricritical point belonging to the RFIM Universality Class

Previous results in 3D:

Site-diluted Potts model Q=3 PRB 61, 3215 (2000).

Bond-diluted Potts model Q=4

W. Janke et al. Nuclear Physics B **719**, 275 (2005).

Site-diluted Potts model Q=4 PRL **100**, 057201 (2008).

Bond-diluted Potts model for large Q

F. Igloi et al. PRE **73**, 026126 (2006).

Previous results in 3D:

Site-diluted Potts model Q=3 PRB 61, 3215 (2000).

Bond-diluted Potts model Q=4

W. Janke et al. Nuclear Physics B **719**, 275 (2005).

Site-diluted Potts model Q=4 PRL 100, 057201 (2008).

Bond-diluted Potts model for large Q

F. Igloi et al. PRE 73, 026126 (2006).

PM pure case FM 0.31 0.68 0.84 p

tricritical point?

Т

Our present approach:

The model: Site-diluted Q=8 Potts model We must find a strong first order phase transition.

The method:

Extended Microcanonical Approach: PRL 98, 137207 (2007).

Our simulation code (disadvantages)

Long simulation time

Grows exponentially with the system size

- Around one week for a $L=64^3$ system

A continuity system is indispensable.

Our experience as scientist

Advantages of the infrastructure

Our experience as scientist

Disadvantages of the infrastructure

Our experience as scientist

Disadvantages of the infrastructure

- In principle less reliable than a non-distributed platform.
- Crucial to detect corrupted samples.
- Analysis times increase due to the continuity system.
- Other infrastructures are more suitable for urgent simulations.

Preliminary Scientific Results

Preliminary Scientific Results

Latent Heat and Surface Tension

November 25th 2010

Preliminary Scientific Results

Tricritical Point location

Introduction

- Volunteer computing.
- Previous experiences.

The IBERCIVIS Project

- Presentation.
- How to use it?

Our experience as scientists

- Our scientific problem.
- Pros and cons of the infrastructure.

Thank you for your attention

www.ibercivis.net