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time dependent Schrodinger equation evolves states
[T (t) > en MO (¢g) >

lets consider two level systems which maps the &its 0, 1 of a
classical computer to quantum “Ising” spimg = —1, +1

O';L-Z =1 2[)@
with a spin wave function that h&s’ complex components fa¥ spins

can one benefit from the simultaneous i.e., parallel in tivoéution of all
these components ?

answer in “canonical” quantum computing: if one is able firghgsical
device, that is able to implement logical gates on Q-hjts;
for very specific mathematical problems
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very specific mathematical problem: Shor’s algorithm: PéfeShor
(ATT Research), “Polynomial-Time Algorithms for Prime k@aczation
and Discrete Logarithms on a Quantum Computer”, quant§ig027
(1995).

It is however very hard to build a quantum computer from

- trapped ions, NMR spins, Quantum Dots, Josephson Juisatc
superconductor, ...

because a large number of logical gates has to be implemetittedigh
precision in a coherent state for long time

Quantum Adiabatic Algorithmforget about logical gates: let a quantized
spin system evolve into its ground-state with a Quantum Haman,
whose classical counterpart parametrizes a optimizatiobl@m of the
NP-hard category

NP — hard : computational effort oc etTconstiV
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It has been conjecture by famous people, that the QA algordbuld
solvegeneraloptimization problems in polynomial time: E. Farhi, J.
Goldstone, S. Gutmann, J. Lapan, A. Lundgren and D. Preden&c292
(2001) 472; T. Kodawaki and H. Nishimori, Phys. Rev. E 58 @®855.

-methods : exact diagonalization, real time Schrodingaaggn solution
for few spins, complexityx N2 for N = 24 spins

-recently : A.P. Young, S. Knysh, V.N. Smelyanskiy, Physv.Reett.
101, 170503(2008) : support for polynomial scaling up\te= 128

-just in October 2009: Young et al., “First order phase titaonsin the
Quantum Adiabatic Algorithm”, arXiv:0910.1378v1 at = 256.
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a system remains in instantaneous energy eigenstate iéa giv
perturbation is acting on it slowly enougMl. Born and V. A. Fock
(1928), "Beweis des Adiabatensatzes"; C. Zener (1932)n~altiabatic
Crossing of Energy Levels".

the Quantum Adiabatic Hamiltonian is a sum
HQA: [1—)\]HD—|—>\HP 0< <1

- of the driver Hamiltoniatlp, = — ) _. o, (transverse field)
- and the problem HamiltoniaH p, with difficult groundstate calculation
- A QA control parameter with time-schedule e.g.,

t
)\(t):?o 0<t<Tp

how large the scal&; has to be, that an instantaneous eigenstate at
groundstate energy for = 0 stays in the ground state up o= 1 ?
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Answer: the QA Hamiltonian has a spectrum and the mass-gap
Am(A) = mi(A) — mg(A)

sets the scale

In particular there exists a minimum gap afspace
Ampmin = {minyAm(\)}

and with avoided level crossings

const

Am?

min

Ty >>

the QA algorithm is expected to converge

the invariant main difficulty possibly remains: a zero tenapare
guantum phase transition with small values of the gap at s@iue\* !,
In particularfirst order phase transitiomll kill polynomial scaling
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define a classical optimization problem, that

- has a Ising Hamiltonian

- has a unique ground state solution

-1s NP hard— 3 — SAT , a satisfiability problem

choose an driver Hamiltonian> transverse field

and quantize that Ising model in the imaginary time
formulation and determine its minimum mass-gap witkin
space— Monte Carlo sampling at few hundred spins (at
least in principle)

compare the complexities classical vs. quantum, with
IncreasingNg,
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given three Ising spins, the three point function

1
3
hClause(Slv S2, 83) — g(z — 81— 82 — 831+ 85152+ 5153 + 52583 — 815253)

only is onehclause = 1if 51 = 52 = 53 = —1, otherwise it ish? =0

Clause

It is a Ising spin version of the Boolean expressigniOR.b,.OR.bs

In Boolean algebra one formd of such3 clauses on a séY bits and in
addition allows for logical negation, theclause possibly has the form

ba,.OR.ba,.OR.ba,

and one asks, wheth&/ of such clauses can be satisfied simultaneously
(logical . AND.)
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Ising Hamiltonian orsq, ..., sy

H E : hClause €ai;Sarr€azSaszs €as SOés)

withe,, = +1fori =1,2,3.

a choice of the index array;,: = 1,2,3fora =1, ..., M and ofe,, IS
called a realization -or- incidence

we choose (non-universal)

realizations af\/ = 5 x N (percolation threshold at/ /N ~ 4.2 in
random 3-SAT)

we construct forced incidences and filter for unique satsfy
assignments : number of ground states exactly one

random but uniform distribution af spin to clause assignment
h(n) =< Za,i 01 (€q, i — M) >Realizations= constant
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we do amulticanonical simulatiof the classical theory for many
realizations and measure an ensemble of ergodicity tinlesea, ;
= 1, ..., Neas fOr “tunneling” in-betweent p i, = 0 and Hp nax ,
forth and back, in units of MONTE CARLO STEPS

the histogram

h(Terg) = N1 Z ot (Terg,z' — Terg)

exhibits “fat tails” h(7,,) o< e~ Ters/Tera.cx with an exponential decay
ergodicity time scale., , ...,,, characterizing each incidence

similar “fat tails” are observed in the distribution of edjaity time
valuesr,,, .., Within the ensemble of incidences !
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logarithmic distributionP (7., ) with fat tails of ergodicity time scales., in
multicanonical simulationas a function of the incidence fo¥ = 20 andM = 100
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logarithmic distributionP (7e.¢,exp ) iN ensembles of incidences for “exponential decay”
ergodicity time scalese..¢,xp IN multicanonical simulationas a function of the number of spins
nforr=M/N =5

In P(t) + const in Samples of Incidences
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the complexity of the classical problemughly doubledf
AN =1In2x10=6— 7 spins are added to the theory !
(\Very, very preliminary )

Classical Complexity

1le+08 | | |
exp(+N/10.0) -------- _
1e+07
1e+06 |

100000 | e

10000 F
AN

1000

10 20 30 40 50 60 70 80
N

Ouantum Adiabatic... — n. 13/21



Trotter timem =0, ..., L, — 1, stepAr, 3 = L. At =T,
p.b.c.

Boltzmann factore—%H

L.—1
—BAHp — =AY Hp({o7 (7m)}) AT
m=0
with driver HamiltonianHp = — ) . o7
L,—1 N
~B(L=NHp — k7 Yy > 07 (1) (T + 1)
m=0 =1

e *"" = tanh(AT[1 — \])
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to the groundstate on the time-slice

N
1
O(Tm) — N Zzzl O-f (Tm)O_iZ’Groundstate
correlation function
1 L,—1
['(1) = 7 O(1,)O(1y, + 7)
T m=0

gap and order parameter for large

F(T) X e_Am(A)T + ‘‘(9OrderParameter‘‘2
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INCIDENCE=0001,L, = 128, A\ = 0.6742 : almost massless !

Inverse Fourier Component squared of Propagator
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INCIDENCE=0179,L, = 128, A = 0.5539 : massive !
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INCIDENCE=0001,L, = 128, A = 0.6742: large quantum complexity !

Mass Gap and Overlap Order Parameter for INCIDENCE=0001

1.6
1.4 |
1.2 |

1L
0.8
0.6 %
0.4

0.2

O «
0.5

T T T T T T m_GAP T
OVERLAP -

0.7
Quantum Adiabatic Control Parameter

0.55 0.6 0.65 0.75 0.8 0.85

0.9

Ouantum Adiabatic... — pn. 18/21



INCIDENCE=0179,L, = 128, A = 0.5539: small quantum complexity !

Mass Gap and Overlap Order Parameter for INCIDENCE=0179
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Quantization doesot apparently booghe efficiency of the
optimization problem solvelr

Quantum Complexity
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In statistical physics there exists a research area, whicarnered by
1) NP-hard optimization problems given B in terms of Ising spins
2) the future possibility to built devices that run quantéfp

3) a large theory space as parametrized by the form of therdriv
HamiltonianH p

one would then like to know : is there a minimum mass-gap,ahat is
polynomial small in the number of degrees of freedom ?

3 SAT is a problem leaned to mathematics/informatics: itematational
demanding (we have realizations for hundred spins, whereangot find
the known groundstate with stochastic searches)

-first preliminary results indicate, that Quantum Adiab&alculations
with transverse field do not improve the situation in 3 SAT

-P. Young et. al. study Exact Cover, which is a weaker problem
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