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Quantum Computing
• time dependent Schrödinger equation evolves states

|Ψ(t) > e
i
h
H(t)(t−t0)|Ψ(t0) >

• lets consider two level systems which maps the bitsbi = 0, 1 of a

classical computer to quantum “Ising” spinsσz
i = −1, +1

σz
i = 1 − 2bi

with a spin wave function that has2N complex components forN spins

• can one benefit from the simultaneous i.e., parallel in time evolution of all

these components ?

• answer in “canonical” quantum computing: if one is able find aphysical

device, that is able to implement logical gates on Q-bits:yes,

for very specific mathematical problems
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Quantum Computing
• very specific mathematical problem: Shor’s algorithm: Peter W. Shor

(ATT Research), “Polynomial-Time Algorithms for Prime Factorization

and Discrete Logarithms on a Quantum Computer”, quant-ph/9508027

(1995).

• it is however very hard to build a quantum computer from

- trapped ions, NMR spins, Quantum Dots, Josephson Junctions in a

superconductor, ...

because a large number of logical gates has to be implementedwith high

precision in a coherent state for long time

• Quantum Adiabatic Algorithm: forget about logical gates: let a quantized

spin system evolve into its ground-state with a Quantum Hamiltonian,

whose classical counterpart parametrizes a optimization problem of the

NP-hard category

NP − hard : computational effort ∝ e+constN
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Quantum Adiabatic Algorithm
• it has been conjecture by famous people, that the QA algorithm could

solvegeneraloptimization problems in polynomial time: E. Farhi, J.

Goldstone, S. Gutmann, J. Lapan, A. Lundgren and D. Preda, Science 292

(2001) 472; T. Kodawaki and H. Nishimori, Phys. Rev. E 58 (1998) 5355.

-methods : exact diagonalization, real time Schrödinger equation solution

for few spins, complexity∝ N2 for N = 24 spins

-recently : A.P. Young, S. Knysh, V.N. Smelyanskiy, Phys. Rev. Lett.

101, 170503(2008) : support for polynomial scaling up toN = 128

-just in October 2009: Young et al., “First order phase transition in the

Quantum Adiabatic Algorithm”, arXiv:0910.1378v1 atN = 256.
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Quantum Adiabatic Alg. Basics
• a system remains in instantaneous energy eigenstate if a given

perturbation is acting on it slowly enough, M. Born and V. A. Fock

(1928), "Beweis des Adiabatensatzes"; C. Zener (1932), "Non-adiabatic

Crossing of Energy Levels".

• the Quantum Adiabatic Hamiltonian is a sum

HQA = [1 − λ]HD + λHP 0 ≤ λ ≤ 1

- of the driver HamiltonianHD = −
∑

i σx (transverse field)

- and the problem HamiltonianHP , with difficult groundstate calculation

- λ: QA control parameter with time-schedule e.g.,

λ(t) =
t

T0
0 ≤ t ≤ T0

how large the scaleT0 has to be, that an instantaneous eigenstate at

groundstate energy forλ = 0 stays in the ground state up toλ = 1 ?

Quantum Adiabatic... – p. 5/21



Quantum Adiabatic Alg. Basics
• Answer: the QA Hamiltonian has a spectrum and the mass-gap

∆m(λ) = m1(λ) − m0(λ)

sets the scale

• in particular there exists a minimum gap onλ-space

∆mmin = {minλ∆m(λ)}

and with avoided level crossings

T0 >>
const

∆m2
min

the QA algorithm is expected to converge!

• the invariant main difficulty possibly remains: a zero temperature

quantum phase transition with small values of the gap at somevalueλ∗ !,
in particularfirst order phase transitionswill kill polynomial scaling
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The Working Program
• define a classical optimization problem, that

- has a Ising Hamiltonian

- has a unique ground state solution

- is NP hard,→ 3 − SAT , a satisfiability problem

• choose an driver Hamiltonian→ transverse field

• and quantize that Ising model in the imaginary time

formulation and determine its minimum mass-gap withinλ

space→ Monte Carlo sampling at few hundred spins (at

least in principle)

• compare the complexities classical vs. quantum, with

increasingNspin
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3 SAT
• given three Ising spins, the three point function

h3
Clause(s1, s2, s3) =

1

8
(2− s1 − s2 − s3 + s1s2 + s1s3 + s2s3 − s1s2s3)

only is onehClause = 1 if s1 = s2 = s3 = −1, otherwise it ish3
Clause = 0

• it is a Ising spin version of the Boolean expressionb1.OR.b2.OR.b3

• in Boolean algebra one formsM of such3 clauses on a setN bits and in

addition allows for logical negation, theα clause possibly has the form

bα1
.OR.bα2

.OR.bα3

and one asks, whetherM of such clauses can be satisfied simultaneously

(logical .AND.)
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3 SAT
• Ising Hamiltonian ons1, ..., sN

Hp =
M∑

α=1

h3
Clause(εα1

sα1
, εα2

sα2
, εα3

sα3
)

with εαi
= ±1 for i = 1, 2, 3.

a choice of the index arrayαi, i = 1, 2, 3 for α = 1, ..., M and ofεαi
is

called a realization -or- incidence

we choose (non-universal)

• realizations atM = 5 × N (percolation threshold atM/N ≈ 4.2 in

random 3-SAT)

• we construct forced incidences and filter for unique satisfying

assignments : number of ground states exactly one

• random but uniform distribution ofε spin to clause assignment

h(n) =<
∑

α,i δ1(εαi
αi − n) >Realizations= constant
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Findings Classical
• we do amulticanonical simulationof the classical theory for many

realizations and measure an ensemble of ergodicity time scalesτerg,i

= 1, ..., Nmeas for “tunneling” in-betweenHP,min = 0 andHP,max ,

forth and back, in units of MONTE CARLO STEPS

the histogram

h(τerg) = N−1
∑

i

δ1(τerg,i − τerg)

exhibits “fat tails”h(τerg) ∝ e−τerg/τerg,exp with an exponential decay

ergodicity time scaleτerg,exp, characterizing each incidence

• similar “fat tails” are observed in the distribution of ergodicity time

valuesτerg,exp within the ensemble of incidences !
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classical complexity
logarithmic distributionP(τerg) with fat tailsof ergodicity time scalesτerg in

multicanonical simulationsas a function of the incidence forN = 20 andM = 100
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classical complexity
logarithmic distributionP(τerg,exp) in ensembles of incidences for “exponential decay”

ergodicity time scalesτerg,exp in multicanonical simulationsas a function of the number of spins

n for r = M/N = 5
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classical complexity
• the complexity of the classical problemroughly doublesif

∆ N ≈ ln 2 × 10 = 6 − 7 spins are added to the theory !

(Very, very preliminary !)
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Quantization
• Trotter timem = 0, ..., Lτ − 1, step∆τ , β = Lτ∆τ = T−1,

p.b.c.

• Boltzmann factor:e−βH

−βλHP → −λ

Lτ−1∑

m=0

HP ({σz
i (τm)})∆τ

with driver HamiltonianHD = −
∑

i σ
x
i

−β(1 − λ)HD → κτ

Lτ−1∑

m=0

N∑

i=1

σz
i (τm)σz

i (τm + 1)

e−2κτ = tanh(∆τ [1 − λ])
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overlap order parameter
to the groundstate on the time-slice

O(τm) =
1

N

N∑

i=1

σz
i (τm)σz

i |Groundstate

correlation function

Γ(τ) =
1

Lτ

Lτ−1∑

m=0

O(τm)O(τm + τ)

gap and order parameter for largeτ

Γ(τ) ∝ e−∆m(λ)τ + ||OOrderParameter||
2
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propagator in k-space
INCIDENCE=0001,Lτ = 128, λ = 0.6742 : almost massless !
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propagator in k-space
INCIDENCE=0179,Lτ = 128, λ = 0.5539 : massive !
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mass gap and order parameter
INCIDENCE=0001,Lτ = 128, λ = 0.6742: large quantum complexity !
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mass gap and order parameter
INCIDENCE=0179,Lτ = 128, λ = 0.5539: small quantum complexity !
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quantum versus classical
Quantization doesnot apparently boostthe efficiency of the

optimization problem solver!
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Conclusion
• in statistical physics there exists a research area, which is cornered by

1) NP-hard optimization problems given byHP in terms of Ising spins

2) the future possibility to built devices that run quantumHP

3) a large theory space as parametrized by the form of the driver

HamiltonianHD

one would then like to know : is there a minimum mass-gap, thatonly is

polynomial small in the number of degrees of freedom ?

• 3 SAT is a problem leaned to mathematics/informatics: its computational

demanding (we have realizations for hundred spins, where wecannot find

the known groundstate with stochastic searches)

-first preliminary results indicate, that Quantum Adiabatic Calculations

with transverse field do not improve the situation in 3 SAT

-P. Young et. al. study Exact Cover, which is a weaker problem
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