MAX-PLANCK-GESELLSCHAFT

x

inetic Monte Carlo simulations

for vestlgatlng

N Nanoporous m

Pay ol = Y -y o
L = - IIfiaLGl iailo

Lars Heinke
Fritz-Haber-Institute of the Max-Planck-Society, Berlin
Jorg Karger

University Leipzig

Com-Phys-09 Workshop,
Leipzig 26.11.2009

Grenzflachenphysik




Nanoporous crystals:

« Periodic, regular structure

- Pore size: few A - few nm

« Zeolites and metal-organic frameworks (MOF)

Applications: N
« Adsorption (e.g. of water) o @7 ¢
- Ion exchange (e.g. water softener) o ®
- Molecular sieve (mass separation, gas purification) .® - °=

« Catalysts (e.g. in petrochemistry)

= Mass transport crucial!
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Best way for studying mass transfer = concentration profiles!
(Pressure step = new equilibrium concentration = mass transfer)

Investigated system: propane in MOF Zn(tbip) (one-dimensional pore structure)
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Surface barrier described
by surface permeability a.
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=» Mass transfer often limited by surface barriers!
(not only by diffusion in the bulk crystal)




Transport, Maxwell-Stefan and self-diffusivity and surface permeability of propane
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Diffusivity and surface permeability @ same concentration dependence!

Furthermore: Ethane, propane and n-butane = samea / D

= Both facts can not be explained by a smaller pore diameter at surface
or by entropic effects!
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Crystal structure = lattice (1 pore segment = 1 lattice site)

Most pore entrances blocked, molecules enter only via open pore entrances
(percentage of open pores pgpen)

Parallel pores have cross connections = crystal defects
(percentage of cross connections p, = p,)
Gas phase = reservoir with fixed concentration (cCgq)
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Details for simulations: X_ vk

« Lattice jump model o gN
 Every time step nt = every molecule makes jump attempt

» Restriction:

— Each site can be occupied by only one molecule (follows from isotherm)
— jumps in y- or z-direction can only occur when adjacent pores are cross
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No interaction between the particles (hard-sphere model)
or nearest-neighbour interaction (Reed-Ehrlich model)

fixed concentration in the reservoir ¢,

Ceq > Co = adsorption experiment

Ceq < Co > desorption experiment

Ceq = Co > self-diffusion experiment

Assumption: Jump rate in x, y and z are equal.
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Concentration profiles along x Concentration profiles perpendicular to x
correspond to solution of diffusion are curved near the surface
equation with surface barriers. and flat in the bulk crystal.

(D and a = const.)



Surface permeability
« constant during transfer process
(if diffusivity constant;

o ~ jump rate ~ D)

» independent of equilibrium concentration
 independent of length of pore system
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Surface permeability depends on
* fraction of open pores (p,,.,)
* probability of cross connections (p, = p,)

=> & (Popen P,) @nd a / D = const.
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Now: Interaction between particles = Diffusivity concentration dependent

Nearest-neighbour interaction between particles on the lattice
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= All properties of the surface barriers presented!
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Self-diffusion simulations with concentration ¢ = 0.3 and ¢ = 0.5 (®=5)
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Popen Can be adjusted to fit the experimental data
(p, = 0.05)
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=>» Fraction of open surface pores is about 0.033 %, i.e. one among 55 X 55 pores is open!

(Under the assumption of equal jump rates in all directions!)



« Surface barrier represented by a high percentage of totally blocked pores
which are cross-connected.

« Influence of different parameters in the model studied by means of kinetic
Monte-Cario simulations.

« All properties of the surface barriers of alkanes in MOF Zn(tbip) are very
well represented!

=» It can be concluded that the surface barriers are caused by this structure!
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Results are only valid under the assumptions of same jump rate everywhere.
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jump rate at pore entrance

Jump rate in surface up to 1 order of magnitude smaller = no difference!



Comparison with analytical results for D-a

continuum system a=2 2
(Dudko, Berezhkovskii, Weiss, J. Phys. Chem, 2005.))

=> If lattice can be approximated as continuum,
good approximation.
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Surface barrier described by surface
permeability.
(inversely proportional)

All quantities follow from concentration profiles
=>Surface permeability experimentally determined!
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Metal organic framework (MOF) Zn(tbip)

Parallel chains of pore segments

Guest molecule: propane

(complemented by ethane
and n-butane)




interference microscope
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e Basic principle: optical path length depends on adsorbate concentration.
e Spatial resolution: 0.5 ym x 0.5 pm



o
Sticking probability P, \,
O

= probability that a gas molecule that hits the crystal surface

continues its trajectory in the pore space, _

i.e.
P, =—7i

gas on surface

]surf =a- (Ceq - Csurf) = Jin T ]out * no concentration > Jn =& Ceq
dependence

e desorption to
vacuum: c.4=0, j,=0

p— NA.p
P27 RT-M

From kinetic theory of gases jgas on surface

Sticking probability:
e P, = 6 x 10°® for methanol in ferrierite
e P, = 0.01 for isobutane in silicalite

=» Varies over many order of magnitude!

L. Heinke et al., Phys. Rev. Lett. 99 (2007) 228301.



