
U i  ki ti  M t  C l  i l ti  Using kinetic Monte Carlo simulations 
for investigating 

surface barriers in nanoporous materials surface barriers in nanoporous materials 

L  H i kLars Heinke
Fritz-Haber-Institute of the Max-Planck-Society, Berlin

Jörg Kärger
University Leipzigy p g

Com-Phys-09 Workshop,
Leipzig 26.11.2009



Introduction – nanoporous materials

Nanoporous crystals: Nanoporous crystals: 
• Periodic, regular structure
• Pore size: few Å - few nm
• Zeolites and metal-organic frameworks (MOF)

Applications:
• Adsorption (e.g. of water)
• Ion exchange (e.g. water softener)
• Molecular sieve (mass separation  gas purification)• Molecular sieve (mass separation, gas purification)
• Catalysts (e.g. in petrochemistry)

 Mass transport crucial!



Experimental data    - recorded concentration profiles

Best way for studying mass transfer  concentration profiles!
(Pressure step  new equilibrium concentration  mass transfer)

Investigated system: propane in MOF Zn(tbip)  (one-dimensional pore structure)
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Experimental data    - recorded concentration profiles

surface 
barrier

intracrystalline 
diffusion

Surface barrier described
by surface permeability α. 

equilibrium
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boundary 
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c (t)

ceq
surf eq surf( )j c c  
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 Mass transfer often limited by surface barriers! 
(not only by diffusion in the bulk crystal)



Transport, Maxwell-Stefan and self-diffusivity and surface permeability of propane

Transport parameters of propane in MOF Zn(tbip)
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Diffusivity and surface permeability  same concentration dependence!

h h d b /Furthermore: Ethane, propane and n-butane  same α / D

 Both facts can not be explained by a smaller pore diameter at surface 

or by entropic effects!



Model of surface barriers

• Crystal structure  lattice (1 pore segment = 1 lattice site)
• Most pore entrances blocked, molecules enter only via open pore entrances

(percentage of open pores popen)
P ll l  h   ti   t l d f t• Parallel pores have cross connections = crystal defects
(percentage of cross connections py = pz)

• Gas phase = reservoir with fixed concentration (ceq)



yz

Kinetic Monte-Carlo simulations

Details for simulations:
• Lattice jump model
• Every time step nt  every molecule makes jump attempt

x
z

• Restriction:
– Each site can be occupied by only one molecule (follows from isotherm)
– jumps in y- or z-direction can only occur when adjacent pores are cross 

connectedconnected

• No interaction between the particles (hard-sphere model) 
or nearest-neighbour interaction (Reed-Ehrlich model)

• fixed concentration in the reservoir ceq

ceq > c0   adsorption experiment 
<  d ti  i tceq < c0   desorption experiment

ceq = c0   self-diffusion experiment

Assumption: Jump rate in x, y and z are equal.Assumption: Jump rate in x, y and z are equal.



Simulated concentration profiles

nt = 10,000
time nt

Concentration profiles along x
correspond to solution of diffusion 
equation with surface barriers

Concentration profiles perpendicular to x
are curved near the surface 
and flat in the bulk crystalequation with surface barriers.

(D and α = const.)
and flat in the bulk crystal.



Resulting surface permeability

Surface permeability
• constant during transfer process
(if diffusivity constant; 
α ~ jump rate ~ D)α  jump rate  D)

• independent of equilibrium concentration 
• independent of length of pore system



Surface permeability depends on 

Resulting surface permeability

p y p
• fraction of open pores (popen)
• probability of cross connections (py = pz)

 ( ) d / D t α (popen, py) and α / D = const.
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Now: Interaction between particles  Diffusivity concentration dependent

Interaction between particles – Reed-Ehrlich model

Now: Interaction between particles  Diffusivity concentration dependent

Nearest-neighbour interaction between particles on the lattice
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 concentration dependence 
5

 concentration dependence 
similar diffusivity

(value of propane 
in MOF Zn(tbip))

 All properties of the surface barriers presented! All properties of the surface barriers presented!



Self-diffusion simulations with concentration c = 0.3 and c = 0.5  (Φ=5)

Determining popen in MOF Zn(tbip)

Ensemble average

Self diffusion simulations with concentration c  0.3 and c  0.5  (Φ 5)

g

Time average

Experimental data:
Propane in MOF 
Zn(tbip)

 p ≈ 0 05 py ≈ 0.05



p can be adjusted to fit the experimental data 

Determining py in MOF Zn(tbip)

popen can be adjusted to fit the experimental data 
(py = 0.05)

Propane in 
MOF Zn(tbip)

Fraction of open surface pores is about 0.033 % , i.e. one among 55 × 55 pores is open!

(Under the assumption of equal jump rates in all directions!)



Conclusion

• Surface barrier represented by a high percentage of totally blocked pores Surface barrier represented by a high percentage of totally blocked pores 
which are cross-connected.

• Influence of different parameters in the model studied by means of kinetic 
M t C l  i l tiMonte-Carlo simulations.

• All properties of the surface barriers of alkanes in MOF Zn(tbip) are very 
well represented!p

 It can be concluded that the surface barriers are caused by this structure!
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Variation of jump rates

Results are only valid under the assumptions of same jump rate everywhere.

What happens if jump rate in 
surface plane is smaller?

popen=0.033%
py=0.05

Jump rate in surface up to 1 order of magnitude smaller  no difference!



Comparison with analytical results for aD 

Simulated results vs. Continuum approach

Comparison with analytical results for 
continuum system 
(Dudko, Berezhkovskii, Weiss, J. Phys. Chem, 2005.))

If lattice can be approximated as continuum

22
L
aD 



If lattice can be approximated as continuum, 
good approximation.

nx × ny



Periodic or random distribution of open pores



Surface barrier described by surface 
permeability. 
(inversely proportional) 1.0n 

c

ceq

Mesoscopic description of the surface barriers

All quantities follow from concentration profiles
Surface permeability experimentally determined!
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130 µm

Crystal structure of MOF Zn(tbip)

Metal organic framework (MOF) Zn(tbip) 25 µm

y

Parallel chains of pore segments

x
z

Guest molecule: propane
(complemented by ethane 
and n-butane)



Experimental setup of interference microscopy

• Basic principle: optical path length depends on adsorbate concentration.
• Spatial resolution: 0.5 µm × 0.5 µm 



Sticking probability Pst

Sticking probability

Sticking probability Pst
= probability that a gas molecule that hits the crystal surface 
continues its trajectory in the pore space,
i.e.

injP 

surf eq surf in out( )j c c j j     in eqj c 

st
gas on surface

P
j



• no concentration 

N

dependence
• desorption to 

vacuum: ceq=0, jin=0

Sti ki  b bilit

From kinetic theory of gases gas on surface 2
AN pj
R T M



  

Sticking probability:
• Pst ≈ 6 × 10-6 for methanol in ferrierite
• Pst ≥ 0.01 for isobutane in silicalite

 Varies over many order of magnitude!

L. Heinke et al., Phys. Rev. Lett. 99 (2007) 228301. 


