Cross-correlations in scaling analyses
of phase transitions

Martin Weigel

Institut fur Physik, KOMET 331
Johannes Gutenberg-Universitat
Mainz, Germany

In collaboration with: Wolfhard Janke

| et @ (5 d °
S Junior: Research Group 7 ‘Sl AT
“Complex Systems with Erustration’ pEBmaa M A




Traditional Method

Traditional MCMC simulation study:

Large number of independent simulations for different observables,
temperatures, lattice sizes, fields etc.
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Traditional Method

Traditional MCMC simulation study:

Thermal or finite-size scaling analysis in the vicinity of a phase transition point.
Different approaches, one standard technique: consider the maxima of
observables,

A (L)=A, L (1+A4,L“+...)
0

max (

and interpret v as shift exponent:

B.. (A, L)—B.=B,L " (1+..)

Hence, one needs to perform a number of simulations to track the locations of
the maxima, allowing to extract critical exponents, amplitude ratios and the
transition coupling.

‘ Almost unfeasible for larger system sizes!
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Histograms

(Multi-)Histogram reweighting:

Use data from a single simulation
at inverse temperature g, to
extrapolate to B# 8, :

ZAeBBO
A(B)=
Zeﬁﬁo

multicanonical

(&)

o

o
1

702 lattice

canonical

Histograms and all that

Multicanonical/Flat histogram simulation:

One effectively estimates the density of
states Q( E£)to compute




Scaling analysis

Finite-size scaling analysis:

To be specific, consider the FSS analysis of a magnetic system with a
continuous phase transition. One standard method (rFerrenberg, Landau,
1991):

« Determine exponent v via the scaling of the Binder parameter and the

logarithmic magnetization derivatives,

dU,,
dB max
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~U,  L"(1+U, L "+..)

dln (qmp*

/v -w
T, max:Dk’OL (1+D, L " +...)

for k=1,2,3, ...
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Scaling analysis

Finite-size scaling analysis:

To be specific, consider the FSS analysis of a magnetic system with a
continuous phase transition. One standard method (rFerrenberg, Landau,
1991):

« Use this value of y to determine remaining exponents via

CV,maX<L):CV,OL(X/V(1 +)
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X, (L)=X,L""(1+...)

max (

m o (L)=my L™ """ (1+...)
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Scaling analysis

Finite-size scaling analysis:

To be specific, consider the FSS analysis of a magnetic system with a
continuous phase transition. One standard method (rFerrenberg, Landau,
1991):

« As well as the transition coupling via

B..(A,L)—B.=B,L """ (1+...)
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Scaling analysis

Finite-size scaling analysis:
This results in a series of estimates for v,
VY, Vs
and a similar series of estimates of S as well as possibly further quantities.

How do we find a best final estimate from these?
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Final estimates:

Several recipes inuse: |3, ..., &

n

« Use single most precise estimate

Or take an average:
« Plain average:

« Error-weighted mean:

Scaling analysis




Scaling analysis

Final estimates:

Several recipes in use: [5“, Lk

n

« Use single most precise estimate

Or take an average:

« Plain average:
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« Error-weighted mean:

o)

=2 —
g (X))

‘ Optimal for uncorrelated data, but %, come
from the same simulation!
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Scaling analysis

Final estimates:

Several recipes in use: |3, ...,

n

« Use single most precise estimate

Or take an average:

« Plain average:
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« Error-weighted mean:

» Covariance-weighted mean:
o=Z"2 T (%)

Ji
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Final estimates:

Several recipes inuse: |3, ..., &

n

« Use single most precise estimate

Or take an average:
Similarly for variance of averages:

e No correlations:

 Including correlations:

Scaling analysis




Case study

Bean-counting: does it really matter?
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Case study

Check it out with some examples:

Finite-size scaling analysis of the critical points of the FM Ising model in
two and three dimensions.

Single-cluster update simulations at or close to T, .
One simulation per lattice size.

Extract maxima data from histogram reweighting.
Estimates of v from maxima of
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dIln(m)) dln(m? dlnqmP) dU, dU,
dg ° dB ~ dB ~dB’ dp

Error estimates from jackknife analysis.
Estimate covariance matrix via

COV ( (Vi V)= i

n s-1
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Case study: 2D Ising model

2D Ising model:

« Simulations at 5.=0.440686794...
 Lattice sizes L=16,24,...,192.
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Case study: 2D Ising model

2D Ising model:

« Simulations at $,=0.440686794...
 Lattice sizes L=16,24,...,192.
« Correlation coefficients p,-I' /0,0 ; and weights:

din(|m|) dIn{m>) dIn(|m|*)
dg dg dg
1.000 0.974 0.939

dIn(|m|)
dgs
d In(m?)
dgs
dln(|m\3)
ds
dU>
ds
dU
1 0.897 0.869 0.820
dgs
i plain 1.000 1.000 1.000
Qi err 0.315 0.271 0.248
Qi cov 5007 —2.426 —0.281
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0.974 1.000 0.991

0.939 0.991 1.000

0.920 0.817 0.743
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Case study: 2D Ising model

2D Ising model:
Exponent estimates and averages

2D

d In([m|)

dg
d In(m?)
ds
dIn(|m|”)

dg
AU

iU,
a7

iplain Ouncorr
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Ocorr

werr JU.IICOI'I

Ocorr

Lcov Ocorr

reference value
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Case study: 2D Ising model

2D Ising model:
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| | | |
dIn{lm|) dln{(m?) dIn{m|3) dUz
dj3 ds dgs
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Case study: 3D Ising model

3D Ising model:

« Simulations at B.~0.22165459.
« Lattice sizes L=8,12,16,...,128.
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Case study: 3D Ising model

3D Ising model:
Exponent estimates and averages

2D

d In([m|)

dg
d In(m?)
ds
dIn(|m|”)

dg
AU

iU,
a7

iplain Ouncorr
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werr JU.IICOI'I

Ocorr

Lcov Ocorr

reference value

e
: (@]
)
©
L
—r
(0p)
5
L
L
-
et
<
(Vp)
-
Q
P
W
=
A
X
Q
Q.
-
(@]
O




Case study: 3D Ising model

2D Ising model:
Exponent estimates and averages

2D 3D

d In([m|)
dg

d In(m?)
dg

dIn(|m|?)

dg
AU

d
d

ds

aﬂ:plain Ouncorr
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Ocorr
Lerr Ouncorr
Ocorr

Lcov Ocorr

reference value
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Case study

Correlations between different exponents:

Similar effects occur between estimates of different exponents. Consider,
e.g., renormalization group eigenvalues,

2 — d/’yt,
(d_ yh)/yt:
(2yn — d) [y,
yn/(d — yn),
d—+ 2 — 2y,
1/9#
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and the associated scaling dimensions x,=d-y.,.
Then one has, for instance:

di2—yl2v=x,=Blv
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Correlations between different exponents:

Estimate /v and y/v from

qmy, o (Ly=my L""

inf

X . (L)=X,L"

max (

and compute d/2-y/2v=x,=plv:
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Case study

Correlations between different exponents:

Estimate /v and y/v from

qmy, o (Ly=my L""

X . (L)=X,L"

max (

and compute d/2-y/2v=x,=plv:

Junior Research Group

corr. coeff./weights
(Im[)int  Xmax
(|m|)int 1.0000 —0.6414
Xmax —0.6414 1.0000
Tplain Ouncorr 1.0000 1.0000

O-COI'I

Terr  Ouncorr 0.0944 0.9056

Ocorr

Tcov Ocorr 0.2050 0.7950

reference value
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Conclusions

Conclusions:

« Substantial cross-correlations between different estimates from single
simulation/series of simulations.
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Conclusions

Conclusions:

« Substantial cross-correlations between different estimates from single
simulation/series of simulations.

« Neglecting them has two effects:
- averages of single estimates are not optimal
- systematically wrong (underestimated) errors
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Conclusions

Conclusions:

« Substantial cross-correlations between different estimates from single
simulation/series of simulations.

Neglecting them has two effects:
- averages of single estimates are not optimal
- systematically wrong (underestimated) errors

They can be easily taken into account by jackknife estimate of covariance
matrix:
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Conclusions

Conclusions:

« Substantial cross-correlations between different estimates from single
simulation/series of simulations.

Neglecting them has two effects:
- averages of single estimates are not optimal
- systematically wrong (underestimated) errors

They can be easily taken into account by jackknife estimate of covariance
matrix:
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COV ( (Vi) V)= i

n s-1

The usual rules of thumb don't (always) work.
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Conclusions

Conclusions:

Substantial cross-correlations between different estimates from single
simulation/series of simulations.

Neglecting them has two effects:
- averages of single estimates are not optimal
- systematically wrong (underestimated) errors

They can be easily taken into account by jackknife estimate of covariance
matrix:
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COV ( (Vi) V)= i

n s-1

The usual rules of thumb don't (always) work.

Doing it right can be equivalent to 10-fold simulation time at (almost) not
cost.
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Conclusions

Conclusions:

Substantial cross-correlations between different estimates from single
simulation/series of simulations.

Neglecting them has two effects:
- averages of single estimates are not optimal
- systematically wrong (underestimated) errors

They can be easily taken into account by jackknife estimate of covariance
matrix:
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COV ( (Vi) V)= i

n s-1

The usual rules of thumb don't (always) work.

Doing it right can be equivalent to 10-fold simulation time at (almost) not
cost.

Not specific to case study at hand: works (or should work) for

- different observables: further exponents, transition temperature

- different situations: soft matter, quantum criticality, first-order transitions
- Preprint arXiv:0811.3097
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