Cross-correlations in scaling analyses of phase transitions

Martin Weigel

Institut für Physik, KOMET 331 Johannes Gutenberg-Universität Mainz, Germany

In collaboration with: Wolfhard Janke

Traditional Method

V=256 V=576 V=1024

V=2116 V=4096 V=8464 V=16384

V=33124 V=65536

0.85

0.90

MAINZ

Large number of independent simulations for different observables, temperatures, lattice sizes, fields etc.

Frustration" Junior Research Group "Complex Systems with

Traditional MCMC simulation study:

Thermal or finite-size scaling analysis in the vicinity of a phase transition point. Different approaches, one standard technique: consider the maxima of observables,

$$A_{\max}(L) = A_0 L^{\kappa/\nu} (1 + A_1 L^{-\omega} + ...)$$

and interpret v as shift exponent:

$$\beta_{\max}(A, L) - \beta_c = B_0 L^{-1/\nu} (1 + ...)$$

Hence, one needs to perform a number of simulations to track the locations of the maxima, allowing to extract critical exponents, amplitude ratios and the transition coupling.

Almost unfeasible for larger system sizes!

Histograms and all that

(Multi-)Histogram reweighting:

Use data from a single simulation at inverse temperature β_0 to extrapolate to $\beta \neq \beta_0$:

Multicanonical/Flat histogram simulation:

One effectively estimates the density of states $\Omega(E)$ to compute

$$\hat{A}(\beta) = \sum_{E} A(E) \hat{\Omega}(E) e^{-\beta E}$$

Finite-size scaling analysis:

To be specific, consider the FSS analysis of a magnetic system with a continuous phase transition. One standard method (Ferrenberg, Landau, 1991):

• Determine exponent ν via the scaling of the Binder parameter and the logarithmic magnetization derivatives,

$$\frac{d U_{2k}}{d \beta} \bigg|_{\max} = U_{k,0} L^{1/\nu} (1 + U_{k,c} L^{-\omega} + \dots)$$

$$\frac{d\ln\langle |m|\rangle^k}{d\beta}\Big|_{\max} = D_{k,0}L^{1/\nu}(1+D_{k,c}L^{-\omega}+\dots)$$

for k = 1, 2, 3, ...

Finite-size scaling analysis:

To be specific, consider the FSS analysis of a magnetic system with a continuous phase transition. One standard method (Ferrenberg, Landau, 1991):

• Use this value of ν to determine remaining exponents via

 $C_{V,\max}(L) = C_{V,0} L^{\alpha/\nu} (1 + ...)$

 $\chi_{\max}(L) = \chi_0 L^{\gamma/\nu} (1 + ...)$

 $m_{\rm inf}(L) = m_0 L^{-\beta/\nu} (1 + ...)$

etc.

Finite-size scaling analysis:

To be specific, consider the FSS analysis of a magnetic system with a continuous phase transition. One standard method (Ferrenberg, Landau, 1991):

• As well as the transition coupling via

$$\beta_{\max}(A, L) - \beta_c = B_0 L^{-1/\nu} (1 + ...)$$

with

$$A \in \left\{ C_V, \frac{d|m|}{d\beta}, \chi, \frac{d\ln\langle |m|^k\rangle}{d\beta}, \frac{dU_{2k}}{d\beta} \right\}$$

etc.

Finite-size scaling analysis:

This results in a series of estimates for $\boldsymbol{\nu}$,

 $\left\{\hat{\boldsymbol{\nu}}_{1,}\hat{\boldsymbol{\nu}}_{2,}\hat{\boldsymbol{\nu}}_{3,}...\right\}$

and a similar series of estimates of β as well as possibly further quantities.

How do we find a best final estimate from these?

Final estimates:

Several recipes in use: $\{\hat{x}_1, \dots, \hat{x}_n\}$

• Use single most precise estimate

Or take an average:

$$\bar{x} = \sum_{i} \alpha_{i} \hat{x}_{i}$$

• Plain average:

 $\alpha_i = 1/n$

• Error-weighted mean:

$$\alpha_i = Z^{-1} \frac{1}{\sigma^2(\hat{x}_i)}$$

Final estimates:

Several recipes in use: $\{\hat{x}_1, \dots, \hat{x}_n\}$

• Use single most precise estimate

Or take an average:

$$\bar{x} = \sum_{i} \alpha_{i} \hat{x}_{i}$$

• Plain average:

 $\alpha_i = 1/n$

• Error-weighted mean:

$$\alpha_i = Z^{-1} \frac{1}{\sigma'(\hat{x}_i)}$$

fi

Optimal for uncorrelated data, but \hat{x}_i come from the same simulation!

Final estimates:

Several recipes in use: $\{\hat{x}_1, \dots, \hat{x}_n\}$

• Use single most precise estimate

Or take an average:

$$\bar{x} = \sum_{i} \alpha_{i} \hat{x}_{i}$$

• Plain average:

$$\alpha_i = 1/n$$

• Error-weighted mean:

$$\alpha_i = Z^{-1} \frac{1}{\sigma^2(\hat{x}_i)}$$

Covariance-weighted mean:

$$\alpha_i = Z^{-1} \sum_j \left[\Gamma(\hat{x})^{-1} \right]_{ji}$$

Final estimates:

Several recipes in use: $\{\hat{x}_1, \dots, \hat{x}_n\}$

Use single most precise estimate

Or take an average:

$$\bar{x} = \sum_{i} \alpha_{i} \hat{x}_{i}$$

Similarly for variance of averages:

• No correlations:

$$\sigma_{\text{uncorr}}^2(\bar{x}) = \sum_i \alpha_i^2 \sigma^2(\hat{x}_i)$$

• Including correlations:

$$\sigma_{\rm corr}^2(\bar{x}) = \sum_{i,j} \alpha_i \alpha_j \Gamma_{ij}(\hat{x})$$

Case study

Bean-counting: does it really matter?

"Complex Systems with Frustration" Junior Research Group

Case study

Check it out with some examples:

Finite-size scaling analysis of the critical points of the FM Ising model in two and three dimensions.

- Single-cluster update simulations at or close to T_c .
- One simulation per lattice size.
- Extract maxima data from histogram reweighting.
- Estimates of $\boldsymbol{\nu}$ from maxima of

$$\frac{d\ln\langle |m|\rangle}{d\beta}, \frac{d\ln\langle |m|^2\rangle}{d\beta}, \frac{d\ln\langle |m|^3\rangle}{d\beta}, \frac{d\ln\langle |m|^3\rangle}{d\beta}, \frac{dU_2}{d\beta}, \frac{dU_4}{d\beta}$$

- Error estimates from jackknife analysis.
- Estimate covariance matrix via

$$\widehat{\text{COV}}(\hat{\nu}_{i}, \hat{\nu}_{j}) = \frac{n-1}{n} \sum_{s=1}^{n} [\hat{\nu}_{i(s)} - \hat{\nu}_{i(.)}] [\hat{\nu}_{j(s)} - \hat{\nu}_{j(.)}]$$

Case study: 2D Ising model

2D Ising model:

- Simulations at $\beta_c = 0.440686794...$
- Lattice sizes *L*=16,24,...,192.

Case study: 2D Ising model

2D Ising model:

- Simulations at $\beta_c = 0.440686794...$
- Lattice sizes *L*=16,24,...,192.
- Correlation coefficients $\rho_{ij} = \Gamma_{ij} / \sigma_i \sigma_j$ and weights:

	$\mathrm{d}\ln\langle m angle$	$\mathrm{d}\ln\langle m^2 \rangle$	$\mathrm{d}\ln\langle \left m\right ^{3} angle$	$\mathrm{d}U_2$	$\mathrm{d}U_4$
	$d\beta$	$\mathrm{d}eta$	$d\beta$	$\mathrm{d}eta$	$d\beta$
$rac{\mathrm{d}\ln\langle m angle}{\mathrm{d}eta}$	1.000	0.974	0.939	0.920	0.897
$rac{\mathrm{d}\ln\langle m^2 angle}{\mathrm{d}eta}$	0.974	1.000	0.991	0.817	0.869
$\frac{\mathrm{d}\ln\langle m ^3\rangle}{\mathrm{d}\beta}$	0.939	0.991	1.000	0.743	0.820
$rac{\mathrm{d} \widetilde{U}_2}{\mathrm{d} eta}$	0.920	0.817	0.743	1.000	0.860
$rac{\mathrm{d} \dot{U}_4}{\mathrm{d} eta}$	0.897	0.869	0.820	0.860	1.000
$\alpha_{i,\mathrm{plain}}$	1.000	1.000	1.000	1.000	1.000
$\alpha_{i,\mathrm{err}}$	0.315	0.271	0.248	0.034	0.132
$lpha_{i,\mathrm{cov}}$	5.007	-2.426	-0.281	-0.104	-1.196

2D Ising model:

Exponent estimates and averages

	2D		3D	
	u	σ		
$rac{\mathrm{d}\ln\langle m angle}{\mathrm{d}eta}$	1.0085	0.0183		and the second s
$rac{\mathrm{d}\ln\langle m^2 angle}{\mathrm{d}eta}$	1.0128	0.0194		
$rac{\mathrm{d}\ln\langle m ^3 angle}{\mathrm{d}eta}$	1.0175	0.0201		
$rac{\mathrm{d} \dot{U}_2}{\mathrm{d} eta}$	1.0098	0.0281		
$rac{\mathrm{d} U_4}{\mathrm{d}eta}$	1.0149	0.0511		
$\bar{x}_{ m plain} \sigma_{ m uncorr}$	1.0127	0.0141		
$\sigma_{ m corr}$		0.0269		A TAK
$ar{x}_{ ext{err}}$ $\sigma_{ ext{uncorr}}$	1.0123	0.0102	RALE DA LEDA	E Za E
$\sigma_{ m corr}$		0.0208	マステクロステレの大大のステ	Cm X L
$ar{x}_{ ext{cov}}$ $\sigma_{ ext{corr}}$	0.9935	0.0078		The states
reference value	1		0.	Con Sect

Case study: 2D Ising model

OHAN

MAINZ

2D Ising model:

"Complex Systems with Frustration" Junior Research Group

Case study: 3D Ising model

3D Ising model:

- Simulations at $\beta_c \approx 0.22165459$.
- Lattice sizes *L*=8, 12, 16,..., 128.

3D Ising model:

Exponent estimates and averages

	2D		3D	
	u	σ		
$rac{\mathrm{d}\ln\langle m angle}{\mathrm{d}eta}$	1.0085	0.0183		
$rac{\mathrm{d}\ln\langle m^2 angle}{\mathrm{d}eta}$	1.0128	0.0194	E PERCENT	
$rac{\mathrm{d}\ln\langle m ^3 angle}{\mathrm{d}eta}$	1.0175	0.0201		
$rac{\mathrm{d} \dot{U}_2}{\mathrm{d} eta}$	1.0098	0.0281		
$rac{\mathrm{d} U_4}{\mathrm{d} eta}$	1.0149	0.0511		
$\bar{x}_{ m plain} \sigma_{ m uncorr}$	1.0127	0.0141	S. R. R. C. R. C. R.	CRA C
$\sigma_{ m corr}$		0.0269		AN TANK
$ar{x}_{ ext{err}}$ $\sigma_{ ext{uncorr}}$	1.0123	0.0102	Real De De La La De	E Za L
$\sigma_{ m corr}$		0.0208	a total in the internet in the	An You
$ar{x}_{ ext{cov}}$ $\sigma_{ ext{corr}}$	0.9935	0.0078		Provide States
reference value	1		0.0	Am Stat

2D Ising model:

Exponent estimates and averages

	2D		3D	
	u	σ	u	σ
$rac{\mathrm{d}\ln\langle m angle}{\mathrm{d}eta}$	1.0085	0.0183	0.6358	0.0127
$rac{\mathrm{d}\ln\langle m^2 angle}{\mathrm{d}eta}$	1.0128	0.0194	0.6340	0.0086
$rac{\mathrm{d}\ln\langle m ^3 angle}{\mathrm{d}eta}$	1.0175	0.0201	0.6326	0.0062
$rac{\mathrm{d}\dot{U}_2}{\mathrm{d}eta}$	1.0098	0.0281	0.6313	0.0020
$rac{\mathrm{d} U_4}{\mathrm{d} eta}$	1.0149	0.0511	0.6330	0.0024
$ar{x}_{ ext{plain}} \sigma_{ ext{uncorr}}$	1.0127	0.0141	0.6334	0.0038
$\sigma_{ m corr}$		0.0269		0.0067
$ar{x}_{ ext{err}}$ $\sigma_{ ext{uncorr}}$	1.0123	0.0102	0.6322	0.0015
$\sigma_{ m corr}$		0.0208		0.0024
$ar{x}_{ ext{cov}}$ $\sigma_{ ext{corr}}$	0.9935	0.0078	0.6300	0.0017
reference value	1		0.6301	0.0004

Correlations between *different* exponents:

Similar effects occur between estimates of different exponents. Consider, e.g., renormalization group eigenvalues,

$$egin{array}{rcl} lpha &=& 2-d/y_t, \ eta &=& (d-y_h)/y_t, \ \gamma &=& (2y_h-d)/y_t, \ \delta &=& y_h/(d-y_h), \ \eta &=& d+2-2y_h, \
u &=& 1/y_t. \end{array}$$

and the associated scaling dimensions $x_i = d - y_i$.

Then one has, for instance:

$$d/2 - \gamma/2\nu = x_{\sigma} = \beta/\nu$$

Case study

Correlations between *different* exponents:

Estimate β/ν and γ/ν from

 $\langle |m| \rangle_{\inf}(L) = m_0 L^{-\beta/\nu}$

$$X_{\max}(L) = X_0 L^{\gamma \prime \nu}$$

and compute $d/2 - \gamma/2\nu = x_{\sigma} = \beta/\nu$:

Case study

Correlations between *different* exponents:

Estimate β/ν and γ/ν from

$$|m|\rangle_{\inf}(L) = m_0 L^{-\beta/\nu}$$

$$X_{\max}(L) = X_0 L^{\gamma/\nu}$$

and compute $d/2 - \gamma/2\nu = x_{\sigma} = \beta/\nu$:

		fits		corr. coeff./weights	
		x_{σ}	σ	$\langle m angle_{ m inf}$	$\chi_{ m max}$
$\langle m \rangle$	$ \rangle_{inf}$	0.1167	0.0054	1.0000	-0.6414
χ_1	max	0.1271	0.0020	-0.6414	1.0000
\bar{x}_{plain} a	$\sigma_{ m uncorr}$	0.1219	0.0027	1.0000	1.0000
($\sigma_{ m corr}$		0.0021		
\bar{x}_{err} a	$\sigma_{ m uncorr}$	0.1261	0.0016	0.0944	0.9056
($\sigma_{ m corr}$		0.0013		
$\bar{x}_{ m cov}$ a	$\sigma_{ m corr}$	0.1250	0.0010	0.2050	0.7950
referen	ce value	0.125			

Conclusions

Conclusions:

• Substantial cross-correlations between different estimates from single simulation/series of simulations.

Conclusions:

- Substantial cross-correlations between different estimates from single simulation/series of simulations.
- Neglecting them has two effects:
 - averages of single estimates are not optimal
 - systematically wrong (underestimated) errors

Junior Research Group

- Substantial cross-correlations between different estimates from single simulation/series of simulations.
- Neglecting them has two effects:
 - averages of single estimates are not optimal
 - systematically wrong (underestimated) errors
- They can be easily taken into account by jackknife estimate of covariance matrix:

$$\widehat{\text{COV}}(\hat{\nu}_{i}, \hat{\nu}_{j}) = \frac{n-1}{n} \sum_{s=1}^{n} [\hat{\nu}_{i(s)} - \hat{\nu}_{i(.)}] [\hat{\nu}_{j(s)} - \hat{\nu}_{j(.)}]$$

- Substantial cross-correlations between different estimates from single simulation/series of simulations.
- Neglecting them has two effects:
 - averages of single estimates are not optimal
 - systematically wrong (underestimated) errors
- They can be easily taken into account by jackknife estimate of covariance matrix:

$$\widehat{\text{COV}}(\hat{v}_i, \hat{v}_j) = \frac{n-1}{n} \sum_{s=1}^{n} [\hat{v}_{i(s)} - \hat{v}_{i(.)}] [\hat{v}_{j(s)} - \hat{v}_{j(.)}]$$

• The usual rules of thumb don't (always) work.

tion

Frustra

Junior Research Group

- Substantial cross-correlations between different estimates from single simulation/series of simulations.
- Neglecting them has two effects:
 - averages of single estimates are not optimal
 - systematically wrong (underestimated) errors
- They can be easily taken into account by jackknife estimate of covariance matrix:

$$\widehat{\text{COV}}(\hat{v}_{i}, \hat{v}_{j}) = \frac{n-1}{n} \sum_{s=1}^{n} [\hat{v}_{i(s)} - \hat{v}_{i(.)}] [\hat{v}_{j(s)} - \hat{v}_{j(.)}]$$

- The usual rules of thumb don't (always) work.
- Doing it right can be equivalent to 10-fold simulation time at (almost) not cost.

- Substantial cross-correlations between different estimates from single simulation/series of simulations.
- Neglecting them has two effects:
 - averages of single estimates are not optimal
 - systematically wrong (underestimated) errors
- They can be easily taken into account by jackknife estimate of covariance matrix:

$$\widehat{\text{COV}}(\hat{v}_i, \hat{v}_j) = \frac{n-1}{n} \sum_{s=1}^{n} [\hat{v}_{i(s)} - \hat{v}_{i(.)}] [\hat{v}_{j(s)} - \hat{v}_{j(.)}]$$

- The usual rules of thumb don't (always) work.
- Doing it right can be equivalent to 10-fold simulation time at (almost) not cost.
- Not specific to case study at hand: works (or should work) for
 - different observables: further exponents, transition temperature
 - different situations: soft matter, quantum criticality, first-order transitions
 - Preprint arXiv:0811.3097

