MC Simulation of Fluid Phase Equilibria in Square-Well Fluids: From Bulk to Two-Dimensional Layers

H.L. Vörtler¹ (horst.voertler@physik.uni-leipzig.de) and W.R. Smith²

¹Institut für Theoretische Physik, Universität Leipzig, Germany ²Faculty of Science, UOIT Oshawa, Canada

November 27, 2008

Motivation and aim

- We study the influence of geometric restrictions on vapour/liquid equilibria and critical data of the square-well fluid as a basic potential model involved in realistic molecular models of complex liquids, such as polymers or aqueous liquids.
- Starting with 3-dim bulk we model the confinement by a series of slit-like pores with decreasing slit widths arriving at 2-dim layers.
- We simulate chemical potential isotherms by canonical MC using (virtual) particle insertion and estimate fluid phase equilibria by thermodynamic integration.
- We analyze finite size effects of chemical potentials and estimate the influence of system size on phase equilibrium data.
- We obtain critical data from vapour/liquid coexistence densities by scaling relations.

\Rightarrow We discuss the shift of the critical temperature under confinement

Motivation and aim

- We study the influence of geometric restrictions on vapour/liquid equilibria and critical data of the square-well fluid as a basic potential model involved in realistic molecular models of complex liquids, such as polymers or aqueous liquids.
- Starting with 3-dim bulk we model the confinement by a series of slit-like pores with decreasing slit widths arriving at 2-dim layers.
- We simulate chemical potential isotherms by canonical MC using (virtual) particle insertion and estimate fluid phase equilibria by thermodynamic integration.
- We analyze finite size effects of chemical potentials and estimate the influence of system size on phase equilibrium data.
- We obtain critical data from vapour/liquid coexistence densities by scaling relations.

\implies We discuss the shift of the critical temperature under confinement

Hard spheres with square-well (SW) attractions:

$$u_{sw}(r) = \begin{cases} \infty & \text{for} \quad r \leq \sigma \\ -\epsilon & \text{for} \quad \sigma < r \leq \lambda\sigma \\ 0 & \text{for} \quad r > \lambda\sigma \end{cases}$$

Chemical potential μ given by Widom's test particle method:

 $\beta \mu = \ln \rho(\vec{r}) + \ln \Lambda^3 - \ln \left(\left\langle \exp[-\beta \Delta W_{N+1,N}] \right\rangle_N \right)_{r_{N+1}}$

Λ is the deBrogli wavelength, and $\rho = N/V$ the particle density. $W_N(\vec{r}^N) = U_N(\vec{r}^N) + U_N^{ext}(\vec{r}^N)$ is the potential energy in an external potential $U_N^{ext}(\vec{r}^N)$ and $(< ... >_N)_{r_{N+1}}$ MC average over test particles inserted at \vec{r}_{N+1} . Improved Insertion Methods:

- 'Un-bonded' insertion (Tripathi, Chapman 2003; Vörtler, Kettler 2006)
- Scaled particle MC (Labik, Smith 1994)
- Gradual insertion (Nezbeda et al. 1991, Kolafa, Vörtler et al 1993)

We consider bulk conditions, planar slits and monolayers (24im agrangements) and

Hard spheres with square-well (SW) attractions:

$$u_{sw}(r) = \begin{cases} \infty & \text{for } r \leq \sigma \\ -\epsilon & \text{for } \sigma < r \leq \lambda \sigma \\ 0 & \text{for } r > \lambda \sigma \end{cases}$$

Chemical potential μ given by Widom's test particle method:

$$\beta \mu = \ln \rho(\vec{r}) + \ln \Lambda^3 - \ln \left(\left\langle \exp[-\beta \Delta W_{N+1,N}] \right\rangle_N \right)_{r_{N+1}}$$

A is the deBrogli wavelength, and $\rho = N/V$ the particle density. $W_N(\vec{r}^N) = U_N(\vec{r}^N) + U_N^{ext}(\vec{r}^N)$ is the potential energy in an external potential $U_N^{ext}(\vec{r}^N)$ and $(< ... >_N)_{r_{N+1}}$ MC average over test particles inserted at \vec{r}_{N+1} . Improved Insertion Methods:

• 'Un-bonded' insertion (Tripathi, Chapman 2003; Vörtler, Kettler 2006)

• Scaled particle MC (Labik, Smith 1994)

• Gradual insertion (Nezbeda et al. 1991, Kolafa, Vörtler et al 1993)

We consider bulk conditions, planar slits and monolayers (24im agangements) one

(1)

Hard spheres with square-well (SW) attractions:

$$u_{sw}(r) = \begin{cases} \infty & \text{for } r \leq \sigma \\ -\epsilon & \text{for } \sigma < r \leq \lambda \sigma \\ 0 & \text{for } r > \lambda \sigma \end{cases}$$

Chemical potential μ given by Widom's test particle method:

$$\beta \mu = \ln \rho(\vec{r}) + \ln \Lambda^3 - \ln \left(\left\langle \exp[-\beta \Delta W_{N+1,N}] \right\rangle_N \right)_{r_{N+1}}$$

A is the deBrogli wavelength, and $\rho = N/V$ the particle density. $W_N(\vec{r}^N) = U_N(\vec{r}^N) + U_N^{ext}(\vec{r}^N)$ is the potential energy in an external potential $U_N^{ext}(\vec{r}^N)$ and $(< ... >_N)_{r_{N+1}}$ MC average over test particles inserted at \vec{r}_{N+1} . Improved Insertion Methods:

- 'Un-bonded' insertion (Tripathi, Chapman 2003; Vörtler, Kettler 2006)
- Scaled particle MC (Labik, Smith 1994)
- Gradual insertion (Nezbeda et al. 1991, Kolafa, Vörtler et al 1993)

We consider bulk conditions, planar slits and monolayers (24im arrangements) 🔊 🤉

(1)

Hard spheres with square-well (SW) attractions:

$$u_{sw}(r) = \begin{cases} \infty & \text{for } r \leq \sigma \\ -\epsilon & \text{for } \sigma < r \leq \lambda\sigma \\ 0 & \text{for } r > \lambda\sigma \end{cases}$$

Chemical potential μ given by Widom's test particle method:

$$\beta \mu = \ln \rho(\vec{r}) + \ln \Lambda^3 - \ln \left(\left\langle \exp[-\beta \Delta W_{N+1,N}] \right\rangle_N \right)_{r_{N+1}}$$

A is the deBrogli wavelength, and $\rho = N/V$ the particle density. $W_N(\vec{r}^N) = U_N(\vec{r}^N) + U_N^{ext}(\vec{r}^N)$ is the potential energy in an external potential $U_N^{ext}(\vec{r}^N)$ and $(< ... >_N)_{r_{N+1}}$ MC average over test particles inserted at \vec{r}_{N+1} . Improved Insertion Methods:

- 'Un-bonded' insertion (Tripathi, Chapman 2003; Vörtler, Kettler 2006)
- Scaled particle MC (Labik, Smith 1994)
- Gradual insertion (Nezbeda et al. 1991, Kolafa, Vörtler et al 1993)

We consider bulk conditions, planar slits and monolayers (2dim arrangements)

H.L Vörtler and W.R. Smith

(1)

Chemical potential isotherms and phase equilibria

Chemical potential vs. density isotherms (Comparison of N=1000 and N = 216, SW bulk)

Vapour-liquid equilibrium and critical point SW monolayer

• Using $\mu(\rho)$ we estimate coexistence data by Gibbs Duhem integration

• Critical T and ρ we obtain from coexistence densities by scaling relations

Chemical potential isotherms and phase equilibria

Chemical potential vs. density isotherms (Comparison of N=1000 and N = 216, SW bulk)

Vapour-liquid equilibrium and critical point SW monolayer

• Using $\mu(\rho)$ we estimate coexistence data by Gibbs Duhem integration

 $\bullet\,$ Critical ${\cal T}$ and ρ we obtain from coexistence densities by scaling relations

H.L Vörtler and W.R. Smith

Finite size effects of chemical potential and phase equilibria – Bulk SW $\,$

⇒ μ vs. ρ shows significant size effect ($\mu(\rho)$ -loops decrease with increasing N) ⇒ Only weak finite size effects on coexistence properties are found

H.L Vörtler and W.R. Smith

Finite size effects of chemical potential and phase equilibria – Bulk SW $\,$

⇒ μ vs. ρ shows significant size effect ($\mu(\rho)$ -loops decrease with increasing N) ⇒ Only weak finite size effects on coexistence properties are found

H.L Vörtler and W.R. Smith

Finite size effects of chemical potential and phase equilibria – SW monolayer

 $\Rightarrow \mu(\rho)$ size effects similar to bulk (loops less symmetric and more scattered) \Rightarrow finite size effects on coexistence properties larger than insthe bulk, =, =

H.L Vörtler and W.R. Smith

Finite size effects of chemical potential and phase equilibria – SW monolayer

⇒ $\mu(\rho)$ size effects similar to bulk (loops less symmetric and more scattered) ⇒ finite size effects on coexistence properties larger than in the bulk.

H.L Vörtler and W.R. Smith

VLE coexistence densities of SW fluid: From bulk to layer

Temperature vs. density V/L Coexistence Curves (SW Fluid)

⇒ only weak confinement influence on vapour density ⇒ significant lowering of liquid density BUT for very narrow slits again increase of ρ_ℓ

Scaling (Wegner expansion) for coexistence densities:

$\rho_{\ell/\nu} = \rho_{\rm C} + C_2 (1 - T^*/T_{\rm C}^*) \pm 0.5 B_0 (1 - T^*/T_{\rm C}^*)^{\beta}; \ T < T_{\rm C}$ (2)

 C_2, B_0 and critical exponent β treated as adjustable parameters: $A \equiv A = 200$

H.L Vörtler and W.R. Smith

VLE coexistence densities of SW fluid: From bulk to layer

Temperature vs. density V/L Coexistence Curves (SW Fluid)

⇒ only weak confinement influence on vapour density ⇒ significant lowering of liquid density BUT for very narrow slits again increase of ρ_{ℓ}

Scaling (Wegner expansion) for coexistence densities:

 $\rho_{\ell/\nu} = \rho_{\rm C} + C_2 (1 - T^*/T_{\rm C}^*) \pm 0.5 B_0 (1 - T^*/T_{\rm C}^*)^{\beta}; \ T < T_{\rm C}$ (2)

 C_2, B_0 and critical exponent β treated as adjustable parameters: $\bullet \bullet = \circ \circ \circ \circ$

H.L Vörtler and W.R. Smith

VLE coexistence densities of SW fluid: From bulk to layer

Temperature vs. density V/L Coexistence Curves (SW Fluid)

⇒ only weak confinement influence on vapour density ⇒ significant lowering of liquid density BUT for very narrow slits again increase of ρ_{ℓ}

Scaling (Wegner expansion) for coexistence densities:

 $\rho_{\ell/\nu} = \rho_{\rm C} + C_2 (1 - T^*/T_{\rm C}^*) \pm 0.5 B_0 (1 - T^*/T_{\rm C}^*)^{\beta}; \ T < T_{\rm C}$ (2)

 C_2, B_0 and critical exponent β treated as adjustable parameters is a solution of β treated as adjustable parameters.

H.L Vörtler and W.R. Smith

Shift of critical temperature of SW fluid under confinement

For $2.5\sigma \leq L \leq 10\sigma$ difference between the critical temperature of bulk and confined fluid decays approximately inversely proportional to *L*

 $\Delta T_{\rm c}^* \equiv T_{\rm cb}^* - T_c^* \propto 1/L$

Exponential decay with exponent reciprocal to linear function in *L*.

 $\Delta T_{\mathsf{C}}^* = a \exp[1/(bL+c)]$

describes accurately all known data. Very narrow slits ($L < 2\sigma$) require further study.

Shift of critical temperature T^{*}vs. slitwidth L

 \Rightarrow No comparable simple relation describing the influence of the confinement on the critical density seems to exist.

Fluid Phase Equilibria: From Bulk to 2 Dim 8

Shift of critical temperature of SW fluid under confinement

For $2.5\sigma \le L \le 10\sigma$ difference between the critical temperature of bulk and confined fluid decays approximately inversely proportional to *L*

 $\Delta T_{\rm c}^* \equiv T_{\rm cb}^* - T_{\rm c}^* \propto 1/L$

Exponential decay with exponent reciprocal to linear function in *L*.

 $\Delta T^*_{\mathsf{C}} = a \exp[1/(bL+c)]$

describes accurately all known data. Very narrow slits ($L < 2\sigma$) require further study.

Shift of critical temperature T^{*}vs. slitwidth L

H.L Vörtler and W.R. Smith

- Geometrical restrictions from 3-dim to 2-dim system modeled by confining the fluid between two infinitely extended planar walls with decreasing widths.
- VLE under confinement: Coexistence density of vapour does not much change BUT liquid density gets significantly lower.
- Depression of T_c under confinement accurately described by exponential decay with exponent reciprocal to linear function in L.
- Effective critical exponents change from 3-dim bulk-like ($\beta \approx 0.3$) to 2-dim Ising-like (($\beta \approx 0.13$).
- Influence of system size on coexistence properties is moderate $(N \approx 600...1000 \text{ sufficient})$. Fluid layers show larger effects than bulk fluids.
- Very narrow slits ($L \leq 2\sigma$) are currently under study.

Combination virtual particle insertion MC + thermodynamic integration is found \Rightarrow conceptionally simple

- \Rightarrow easy to implement in existing canonical MC and MD codes
- \Rightarrow to provide reliable phase equilibria for bulk and confined fluids.
- ⇒ interesting alternative to GCMC or GEMC.

- Geometrical restrictions from 3-dim to 2-dim system modeled by confining the fluid between two infinitely extended planar walls with decreasing widths.
- VLE under confinement: Coexistence density of vapour does not much change BUT liquid density gets significantly lower.
- Depression of T_c under confinement accurately described by exponential decay with exponent reciprocal to linear function in L.
- Effective critical exponents change from 3-dim bulk-like ($\beta \approx 0.3$) to 2-dim Ising-like (($\beta \approx 0.13$).
- Influence of system size on coexistence properties is moderate $(N \approx 600...1000 \text{ sufficient})$. Fluid layers show larger effects than bulk fluids.
- Very narrow slits ($L \leq 2\sigma$) are currently under study.

Combination virtual particle insertion MC + thermodynamic integration is found \Rightarrow conceptionally simple

- \Rightarrow easy to implement in existing canonical MC and MD codes
- \Rightarrow to provide reliable phase equilibria for bulk and confined fluids.
- ⇒ interesting alternative to GCMC or GEMC.

H.L Vörtler and W.R. Smith

- Geometrical restrictions from 3-dim to 2-dim system modeled by confining the fluid between two infinitely extended planar walls with decreasing widths.
- VLE under confinement: Coexistence density of vapour does not much change BUT liquid density gets significantly lower.
- Depression of T_c under confinement accurately described by exponential decay with exponent reciprocal to linear function in *L*.
- Effective critical exponents change from 3-dim bulk-like ($\beta \approx 0.3$) to 2-dim Ising-like (($\beta \approx 0.13$).
- Influence of system size on coexistence properties is moderate (N ≈ 600...1000 sufficient). Fluid layers show larger effects than bulk fluids.
- Very narrow slits ($L \leq 2\sigma$) are currently under study.

Combination virtual particle insertion MC + thermodynamic integration is found \Rightarrow conceptionally simple

- \Rightarrow easy to implement in existing canonical MC and MD codes
- \Rightarrow to provide reliable phase equilibria for bulk and confined fluids.
- ⇒ interesting alternative to GCMC or GEMC.

H.L Vörtler and W.R. Smith

- Geometrical restrictions from 3-dim to 2-dim system modeled by confining the fluid between two infinitely extended planar walls with decreasing widths.
- VLE under confinement: Coexistence density of vapour does not much change BUT liquid density gets significantly lower.
- Depression of T_c under confinement accurately described by exponential decay with exponent reciprocal to linear function in L.
- Effective critical exponents change from 3-dim bulk-like ($\beta \approx 0.3$) to 2-dim Ising-like (($\beta \approx 0.13$).
- Influence of system size on coexistence properties is moderate $(N \approx 600...1000 \text{ sufficient})$. Fluid layers show larger effects than bulk fluids.
- Very narrow slits ($L \leq 2\sigma$) are currently under study.

Combination virtual particle insertion MC + thermodynamic integration is found \Rightarrow conceptionally simple

- \Rightarrow easy to implement in existing canonical MC and MD codes
- \Rightarrow to provide reliable phase equilibria for bulk and confined fluids.
- ⇒ interesting alternative to GCMC or GEMC.

- Geometrical restrictions from 3-dim to 2-dim system modeled by confining the fluid between two infinitely extended planar walls with decreasing widths.
- VLE under confinement: Coexistence density of vapour does not much change BUT liquid density gets significantly lower.
- Depression of T_c under confinement accurately described by exponential decay with exponent reciprocal to linear function in L.
- Effective critical exponents change from 3-dim bulk-like ($\beta \approx 0.3$) to 2-dim Ising-like (($\beta \approx 0.13$).
- Influence of system size on coexistence properties is moderate $(N \approx 600...1000 \text{ sufficient})$. Fluid layers show larger effects than bulk fluids.
- Very narrow slits ($L \leq 2\sigma$) are currently under study.

Combination virtual particle insertion MC + thermodynamic integration is found \Rightarrow conceptionally simple

- \Rightarrow easy to implement in existing canonical MC and MD codes
- \Rightarrow to provide reliable phase equilibria for bulk and confined fluids.
- ⇒ interesting alternative to GCMC or GEMC

- Geometrical restrictions from 3-dim to 2-dim system modeled by confining the fluid between two infinitely extended planar walls with decreasing widths.
- VLE under confinement: Coexistence density of vapour does not much change BUT liquid density gets significantly lower.
- Depression of T_c under confinement accurately described by exponential decay with exponent reciprocal to linear function in L.
- Effective critical exponents change from 3-dim bulk-like ($\beta \approx 0.3$) to 2-dim Ising-like (($\beta \approx 0.13$).
- Influence of system size on coexistence properties is moderate $(N \approx 600...1000 \text{ sufficient})$. Fluid layers show larger effects than bulk fluids.
- Very narrow slits ($L \leq 2\sigma$) are currently under study.
- Combination virtual particle insertion MC + thermodynamic integration is found \Rightarrow conceptionally simple
- \Rightarrow easy to implement in existing canonical MC and MD codes
- \Rightarrow to provide reliable phase equilibria for bulk and confined fluids.
- ⇒ interesting alternative to GCMC or GEMC

- Geometrical restrictions from 3-dim to 2-dim system modeled by confining the fluid between two infinitely extended planar walls with decreasing widths.
- VLE under confinement: Coexistence density of vapour does not much change BUT liquid density gets significantly lower.
- Depression of T_c under confinement accurately described by exponential decay with exponent reciprocal to linear function in L.
- Effective critical exponents change from 3-dim bulk-like ($\beta \approx 0.3$) to 2-dim Ising-like (($\beta \approx 0.13$).
- Influence of system size on coexistence properties is moderate (N ≈ 600...1000 sufficient). Fluid layers show larger effects than bulk fluids.
- Very narrow slits ($L\leq 2\sigma$) are currently under study.

Combination virtual particle insertion MC + thermodynamic integration is found \Rightarrow conceptionally simple

- \Rightarrow easy to implement in existing canonical MC and MD codes
- \Rightarrow to provide reliable phase equilibria for bulk and confined fluids.
- ⇒ interesting alternative to GCMC or GEMC.

- Geometrical restrictions from 3-dim to 2-dim system modeled by confining the fluid between two infinitely extended planar walls with decreasing widths.
- VLE under confinement: Coexistence density of vapour does not much change BUT liquid density gets significantly lower.
- Depression of T_c under confinement accurately described by exponential decay with exponent reciprocal to linear function in L.
- Effective critical exponents change from 3-dim bulk-like ($\beta \approx 0.3$) to 2-dim Ising-like (($\beta \approx 0.13$).
- Influence of system size on coexistence properties is moderate (N ≈ 600...1000 sufficient). Fluid layers show larger effects than bulk fluids.
- Very narrow slits ($L \leq 2\sigma$) are currently under study.

Combination virtual particle insertion MC + thermodynamic integration is found \Rightarrow conceptionally simple

- \Rightarrow easy to implement in existing canonical MC and MD codes
- \Rightarrow to provide reliable phase equilibria for bulk and confined fluids. \Rightarrow interacting alternative to CCMC or CEMC

 \Rightarrow interesting alternative to GCMC or GEMC.

H.L Vörtler and W.R. Smith

- Research was supported by SHARCNET high performance computer network (www.sharcnet.ca).
- Horst Vörtler acknowledges financial support by University of Ontario Institute of Technology, Canada

< 日 > < 同 > < 回 > < 回 > < 回 > <

References

- 1. B. Widom; J.Chem.Phys. 39(1963)2808; J. Stat. Phys. 19(1978)563.
- 2. I. Nezbeda, J. Kolafa; Molec. Simulation. 5(1991)391.
- 3. J. Kolafa, H.L. Vörtler, K. Aim, I. Nezbeda;
- Molec. Simulation 11(1993)305.
- 4. S. Labik, W.R. Smith; Molec. Simulation 12(1994)23.
- 5. H.L. Vörtler, W.R. Smith,; J. Chem. Phys. 112(2000)5168.
- 6. F. del Rio, E. Avalos, R.Espindola, L.F. Rull, G. Jackson, S. Lago; Mol. Phys. 100(2002)2531.
- 7. H.L. Vörtler, M. Kettler; Chem. Phys. Letters 377(2003)557.
- 8.. S. Tripathi, W.G. Chapman; Mol. Phys. 101(2003)1199.
- 9. L. G. MacDowell, P. Virnau, M. Müller, K. Binder
- J. Chem. Phys. 120(2004)5293.
- 10.L.G. MacDowell, V.K. Chen, J.R. Errington, J. Chem. Phys. 125(2006)034705.
- 11. H.L. Vörtler, M. Kettler; Mol. Phys. 104(2006)233.
- 12. J. K. Singh, S. K. Kwak; J. Chem. Phys. 126(2007)024702.
- 13. H.L. Vörtler, K. Schäfer, W.R. Smith; J. Phys. Chem. B 112(2008) 4656.
- 14. H.L. Vörtler; Collect. Czech. Chem. Commun.;73(2008)518.

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ● ● ●