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Motivation and aim

o We study the influence of geometric restrictions on vapour/liquid
equilibria and critical data of the square-well fluid as a basic potential
model involved in realistic molecular models of complex liquids, such
as polymers or aqueous liquids.

@ Starting with 3-dim bulk we model the confinement by a series of
slit-like pores with decreasing slit widths arriving at 2-dim layers.

@ We simulate chemical potential isotherms by canonical MC using
(virtual) particle insertion and estimate fluid phase equilibria by
thermodynamic integration.

@ We analyze finite size effects of chemical potentials and estimate the
influence of system size on phase equilibrium data.

e We obtain critical data from vapour/liquid coexistence densities by
scaling relations.
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equilibria and critical data of the square-well fluid as a basic potential
model involved in realistic molecular models of complex liquids, such
as polymers or aqueous liquids.

@ Starting with 3-dim bulk we model the confinement by a series of
slit-like pores with decreasing slit widths arriving at 2-dim layers.

@ We simulate chemical potential isotherms by canonical MC using
(virtual) particle insertion and estimate fluid phase equilibria by
thermodynamic integration.

@ We analyze finite size effects of chemical potentials and estimate the
influence of system size on phase equilibrium data.

e We obtain critical data from vapour/liquid coexistence densities by
scaling relations.

— We discuss the shift of the critical temperature under confinement
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Models under consideration and simulation methods

Hard spheres with square-well (SW) attractions:

o for r<o
usy(r) =< —€ for o<r<\o
0 for r>Ao
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Models under consideration and simulation methods

Hard spheres with square-well (SW) attractions:
o for r<o
usy(r) =< —€ for o<r<\o
0 for r>Ao

Chemical potential 1 given by Widom's test particle method:

B =0 p(7) + I A* ~ In ({exp[~ 58 WaraaDln) ., o

N is the deBrogli wavelength, and p = N/V the particle density.
Wi (PV) = Un(PV) + UgE(PV) is the potential energy in an external potential
Ugt(rN) and (< ... >N) ., MC average over test particles inserted at Fiy.1.
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usy(r) =< —€ for o<r<\o
0 for r>Ao

Chemical potential 1 given by Widom's test particle method:

B =Inp(F) +In A* = In ({exp[~ BAWN 1)), )

N is the deBrogli wavelength, and p = N/V the particle density.
Wi (PV) = Un(PV) + UgE(PV) is the potential energy in an external potential

Ugt(rN) and (< ... >N) ., MC average over test particles inserted at Fiy.1.

Improved Insertion Methods:
@ 'Un-bonded’ insertion (Tripathi, Chapman 2003; Vértler, Kettler 2006)

@ Scaled particle MC (Labik, Smith 1994)
@ Gradual insertion (Nezbeda et al. 1991, Kolafa, Vortler et al 1993)
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Models under consideration and simulation methods

Hard spheres with square-well (SW) attractions:

o for r<o
usy(r) =< —€ for o<r<\o
0 for r>Ao

Chemical potential 1 given by Widom's test particle method:

B =Inp(F) +In A* = In ({exp[~ BAWN 1)), )

N is the deBrogli wavelength, and p = N/V the particle density.
Wi (PV) = Un(PV) + UgE(PV) is the potential energy in an external potential

Ugt(rN) and (< ... >N) ., MC average over test particles inserted at Fiy.1.

Improved Insertion Methods:
@ 'Un-bonded’ insertion (Tripathi, Chapman 2003; Vértler, Kettler 2006)

@ Scaled particle MC (Labik, Smith 1994)
@ Gradual insertion (Nezbeda et al. 1991, Kolafa, Vortler et al 1993)

We consider bulk conditions, planar slits and monolayers (2dim arrangements)
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Chemical potential isotherms and phase equilibria

Vapour-liquid equilibrium and critical point

Chemical potential vs. density isotherms
SW monolayer

(Comparison of N=1000 and N =216, SW bulk)
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Chemical potential isotherms and phase equilibria

Chemical potential vs. density isotherms Vapour-liquid equilibrium and critical point
(Comparison of N=1000 and N =216, SW bulk) SW monolayer
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@ Using u(p) we estimate coexistence data by Gibbs Duhem integration

@ Critical T and p we obtain from coexistence densities by scaling relations
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Finite size effects of chemical potential and phase equilibria

— Bulk SW

Chemical potential isotherms fgr various particle numbers
(bulk SW, T =1.05)
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Coexistence densities vs. no. of particles
(bulk square well T*:1.05)
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Finite size effects of chemical potential and phase equilibria
— Bulk SW

Chemical potential isotherms for various particle numbers

(bulk SW, T= 1.05) Coexistence densities vs. no. of particles

(bulk square well T*:1.05)
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= p vs. p shows significant size effect (1(p)-loops decrease with increasing N)
= Only weak finite size effects on coexistence properties are found
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Finite size effects of chemical potential and phase equilibria
— SW monolayer

Chemical potential isotherms for varioqs particle numbers Coexist densiti f il
(2-dimensional SW fluid, T'=0.55) oexistence densities vs. no of particles

(SW monolayer T'=0.55)
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= u(p) size effects similar to bulk (loops less symmetric and more scattered)
= finite size effects on coexistence properties larger than in-the bulk
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VLE coexistence densities of SW fluid: From bulk to layer

Temperature vs. density /L Coexistence Curves (SW Fluid)
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VLE coexistence densities of SW fluid: From bulk to layer

Temperature vs. density /L Coexistence Curves (SW Fluid)
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= only weak confinement
influence on vapour density

= significant lowering of liquid
density

BUT for very narrow slits again
increase of py
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VLE coexistence densities of SW fluid: From bulk to layer

Temperature vs. density /L Coexistence Curves (SW Fluid)
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Scaling (Wegner expansion) for coexistence densities:

Py = pct Gl — T*/TE) £05Bp(1 — T*/TE)%; T < Te

(2)

(>, By and critical exponent [3 treated as adjustable parameters.
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Shift of critical temperature of SW fluid under confinement

For 2.50 < L < 100 difference between the
critical temperature of bulk and confined

. . . Shift of critical temperature T'vs. slitwidth L
fluid decays approximately inversely
proportional to L "
|
o * o * \ his work
ATC — 'cb TC X 1/L (3) 281\ : 'Singhand Kwak (2007)
\ — — —  Equation (3)
Exponential decay with exponent 2N Equation (4)
reciprocal to linear function in L. g
K
ATE = aexp[l/(bL+ )] (4) 021
describes accurately all known data. o
Very narrow slits (L < 207 require further 24 0802w
L
study. °
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Very narrow slits (L < 207 require further 24 0802w
L
study. ’

= No comparable simple relation describing the influence of the confinement on
the critical density seems to exist.
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Summary and conclusions
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@ Influence of system size on coexistence properties is moderate
(N ~ 600...1000 sufficient). Fluid layers show larger effects than bulk fluids.
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@ Influence of system size on coexistence properties is moderate
(N ~ 600...1000 sufficient). Fluid layers show larger effects than bulk fluids.

@ Very narrow slits (L < 20) are currently under study.
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Summary and conclusions

@ Geometrical restrictions from 3-dim to 2-dim system modeled by confining
the fluid between two infinitely extended planar walls with decreasing widths.

@ VLE under confinement: Coexistence density of vapour does not much
change BUT liquid density gets significantly lower.

@ Depression of T, under confinement accurately described by exponential
decay with exponent reciprocal to linear function in L.

o Effective critical exponents change from 3-dim bulk-like (5 &~ 0.3) to 2-dim
Ising-like ((5 = 0.13).

@ Influence of system size on coexistence properties is moderate
(N ~ 600...1000 sufficient). Fluid layers show larger effects than bulk fluids.

@ Very narrow slits (L < 20) are currently under study.

Combination virtual particle insertion MC + thermodynamic integration is found
= conceptionally simple

= easy to implement in existing canonical MC and MD codes

= to provide reliable phase equilibria for bulk and confined fluids.

= interesting alternative to GCMC or GEMC.
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