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Fractionalization

« First theoretical model supporting fractional excitations-spin-
charge separation in polyacetylene molecules [1,2]

 (Ground state - idealized chain molecule:

 Abond (= -2e) is removed from either ground state - we obtain
two defects both with charge +e and spin 0 (spin charge-
separation):

One excitation-decays into two collective excitations




Fractionalization

« Similarly - removed bond would with charge -e would give rise to
fractional charges with charge e/2+!

|

Domain Wall Domain Wall

« Similarly - add/remove one charged particles on a frustrated lattice -
gives two fractionally charged excitations

One excitation-decays into two collective excitations

« Fractionalization-observed experimentally in Fractional
Quantum Hall Effect [3]




Geometric Frustration

* Fractional charges -arise also in theoretical
models of geometrically frustrated systems
[1]

Occur in lattice structures where it is
impossible to minimize the energy of all local
interactions: y
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Characterised by a macroscopic ground-
state degeneracy-> high density of low-lying
excitations: + L L 1t L 1
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Geometric Frustration in nature

« Spinel minerals form pyrochlore structures:

Spinel structure AByXy ==>
B sites form a pyrochlore lattice

“Samarian Spinel”
(Iranian Crown Jewels)

* M; H(XO,) forms a kagome lattice structure:
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Fractionalised charges due to
geometrical frustration

 There are models of 2D lattice structures
supporting fractional excitations [9].

* These approaches so far yield fractional

excitations that are confined [6].

» 3D lattices have been shown to support
deconfined phases|7,8] ~—




Fractionalised charges due to
geometrical frustration

Kagome lattice models-can we investigate the dynamics of
systems exhibiting charge fractionalization”? Can we determine
the confinement/deconfinement of the excitations?

Do these fractionalized excitations exhibit fractionalised
statistics”? What are they?

«Can we use such models to explain experimental
observations in real materials with such structures?




A model of fractionalization

=Consider a model of spinless fermions on
the kagome lattice

» Extended Hubbard model with charge
degrees of freedom

H=-t Z (cle; + He)+V Z sy

<%,7> <%,7>
=Consider 1/3 filling

sAt =0, V>0, macroscopic number of
ground states




A model of fractionalization

« Strong correlation limit (large nearest-
neighbour repulsions V) -> local
constraint of 1 particle per triangle on
the lattice ->

* Finite hopping of fractional charges in
strongly correlated limit where 0 < |{| <V

* Add one particle -> increase system
energy by 2V




A model of fractionalization

* One particle with charge e is added to the
system - it can decay into two defects each
carrying the charge e/2 ->

One excitation-decays into two collective excitations



A model of fractionalization
» Large Hilbert space sizes -> limit
numerical investigation

—

* Lowest order hopping process lifting

degeneracy - particle hopping around
hexagons:




A model of fractionalization

H=-t Z (cle; + He)+V Z sy

<t,7> <2,7>




Effective model...
« Exact in the limit of infinitely large V

* Reduces drastically Hilbert space size

* Has no fermionic sign problem!
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Effective model...
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Mapping to Quantum Dimer Model




Mapping to Quantum Dimer Model




Mapping to Quantum Dimer Model




Mapping to Quantum Dimer Model




Mapping to Quantum Dimer Model




Quantum Dimer Mapping OO0
| | e OO O
* Mapping-effective Hamiltonian to ‘plaquette O O
phase’ (mu=0) of known system [8]:

Hoow = ), ~g(| NI+ Hee) + (| QN+ [N
(©)




Investigating dynamical properties...

» With a ‘doped system’-consider
dynamical properties - add extra term to
Hamiltonian

Projected hopping operator

Original effective Hamiltonian /\

e
Haopea = Hepy —t» Plclc; + H.c.)P

'\ i,

Describes a system at 1/3 filling +/- one particle




Numerical Methods

« Model Hamiltonian basis transformation
-> |Lanczos recursion method [9]

* Analyse finite clusters from 25-75 sites

* Direct insight into system dynamics-
from spectral function calculations

Spectral function - A(k,w) gives probability for adding (+) or
removing (-) a particle with momentum k and energy to the
system...

Ak,w) = A" (k,w) + AT (k,w)
Density of states- sum over ?II K - space contributions:
D(w) = Ne 21; A(k,w)




How good is the model?
 Exact and effective models on a 27-site

cluster are compared...

Exact Model Exact Model
Effective Model Effective Model




Results

Density of
states figures @@
show that i |
finite-size
effects Ul N
decrease —— —
markedly
with system

size:

Particle contribution
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~ Results
* Hole contribution is symmetric; the

eigenspectrum for the 1/3 filled system in the
presence of one hole defect is symmetric:

Hole contribution to the density
of states




Results

_ Bipartite hopping on
Eigenspectrum symmetry - kagome lattice

Bipartiteness ‘ expressible in terms of a
i gauge transformation

Example - 2D Square Lattice

B sites

b;) = (—=1)=4 ™)

— Hhop — _Hhop
:>Eig[Hhop] . Eig[—Hhop]




Results
e Large peak in particle
contribution - at zero Particle contribution to the spectral
momentum- full spectral function for the three energy bands
Weight of flat band at k=(0,0), 75- site cluster
contained in a single
delta peak:
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Do such models model real

systems?
» Materials which may provide the
answer...MH;(XO,),

* Here protons act as particles at 1/3
filling

possible position of protons
e M
VvV XOy tetrahedron (downward)
A XOy tetrahedron (upward)
M=Rb, Cs X=S, Se

Kagome lattice




Do such models model real

systems?
* Model gives three possible charge-ordered
states - material shows just two of these at
different temperatures!

Goal-to obtain a phase diagram of the model
to compare with that of corresponding real

NEICHEIS

Apply Random Phase Approximation to
calculate charge susceptibities; calculate
spectral functions in the limit of small V
Vavanv VN
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Conclusion and

« With exact diagonalisation on finite size clusters
we are able to analyse the dynamics of kagome
lattice models at specific fillings

Understand most prominent features of spectrum - what is the physical
interpretation?

Compare -bosonic and fermionic dynamics

Effective model is bipartite in nature-how can we understand this through a
gauge transformation?

QDM mapping -> we have a confined ground state- evidence of this in the
spectral function results?

* RPA treatment of Hubbard model/spectral
function calculations - hope to compare the
results of our theoretical model with real materials

Thank you!




Fractionalization

 Fractional excitations exhibit
fractional statistics [a]:

Ap=m

P(1,2) — ¢/(1,2) = e2y(1,2)

3D -> fermionic/bosonic statistics

2D -> possibility of anyonic statistics!




