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Question: What is a spin glass (for us)?

Answer: 
collection of spins with a low-T state 
that is frozen disordered

(ferromagnet has completely 
ordered low-T state, i.e. a net 
magnetisation) 

m=
1
N∑i

mi=0

mi=〈 i 〉≠0per site magnetisation:

no net magnetsiation:

Experimental Part :-)Experimental Part :-)

(like ferrormagnet)

(unlike ferrormagnet)

exact: of order 
1
N

Q: Looking at a single spin, can 
I decide if he belongs to a 
spin glass?

A: NO!



  

What exactly do we want to calculate?

From experiment: 
impurities move slowly/not at all
spins change much faster

quenched couplings

 draw some Jij
 keep them fixed
 calculate some quantity, e.g

 do average over couplings = [...]

F=−T logZ=−T log∑
{}

e−H 1 , ... ,N

[F ]=−T [logZ ]=−T [log∑
{ }

e−H1 , ... ,N]

F  J
N
=f  J

free energy/degree of freedom:

Is this averaging allowed?
After all, there is only one set 
of couplings in a real SG:

at thermodynamic limit (         ):N∞

f  J=[f ]

self-averaging of the 
free energy (density)

to quench=abschrecken 
(im Sinne eines gekochten Eis)



  

We are looking at We are looking at twotwo models: models:

HSK=−∑
i j

Jij s i s j

a) Sherrington-Kirkpatrick
(SK) model
[D. Sherrington and S. Kirkpartick, 
PRL 35 (1975) 1792]

HEA=−∑
〈 i j 〉

Jij s i s j

b) Edwards-Anderson 
(EA) model
[S. F. Edwards and P. W. Anderson,
 J. Phys. F: Metal Phys. 5 (1975) 965]

Gaussian distribution with:

〈 Jij 〉=0

〈 J ij 〉
2−〈 J ij

2 〉=
1
N

Bimodal distribution:

Parisi's replica solution [PRL 43 (1979) 1754]
or mathematical: M. Talagrand, C. R. Acad. Sci. Paris, Ser. I 337 (2003) 111

no solution, problem is NP hard

T c≈1.10T c=1

mean field 3 dimensions
from MC [M. Hasenbusch, A. Pelissetto and
E. Vicari, J. Stat. Mech. (2008) L02001]

Note: 
both types of couplings are believed 
to show the same physics at finite 
temperatures! 
this is just our choice



  

Multi-Valley pictureMulti-Valley picture

“valley”

microscopically intermediate macroscopically

Now, quantities in terms of valleys:

e.g. site-magnetisation: mi
a=〈 i 〉a

average over
all valleys

mi=∑
a

Pa⋅mi
a

Pa=e−Fastatistical weight of 
valley a

define OVERLAP
of valley a and b: qab=

1
N
∑
i

mi
ami

b

a and b are in the 
same valley:

completely different 
valleys:

a=b  qaa=qEA

a≠b  qab=?



  

P Jq=∑
ab

Pa⋅Pb⋅q−qabdefine OVERLAP
distribution:

P q=[P J q]and

probability that valleys a and b (=pure states a and b) 
have mutual overlap q

the OVERLAP is the the OVERLAP is the physicalphysical order parameter order parameter



  

So, and what happens in less than ∞ dimensions?

Parisi
Replica Symmetry Breaking

Bray/Moore & Fisher/Huse
droplet picture/scaling theory

dimension of excitations

GS structureGS structure

system-size excitations 
for

L∞

E~L , 0

E∞

E~L , =0

EE0

space filling
ds=d

fractal
dsd

trivial

P 0~L−

non-trivial

P 0~L0

...



  

What can be done to verify 3D behavior:What can be done to verify 3D behavior:

Measure with the computer ...
stiffness exponents 
e.g. apply two different boundary conditions

 susceptibilities, 
correlation functions:         :distance between i and j,

       average in a single pure state

distribution of overlap parameter  
and check what happens at  

Use “advanced” algorithms such as ...
parallel tempering
multi-overlap
Wang-Landau in E and q
n-fold-way
waiting-time method
...
or combinations of the above as
n-fold-way+multi-overlap+parallel tempering

q=0
P q

[〈si s j 〉
2]−[〈 si 〉

2][〈s j 〉
2]~T /YR R



  

 introduce second
“independent” system
with the same set of 
couplings 

How to practically measure the overlap for the 3D EAI?

q= 1
N∑i

N

 i
1 i

2

Recipe:
 take normal Ising model

with spins
{ Jij} draw random couplings

for every pair of spins { i
2}{ i

1}

 choose “advanced” 
algorithm and do 
thermalisation

 simulate one sweep
of system 1

 simulate one sweep 
of system 2

 measure overlap

repeat the 
measurement/simulation 
quite often!

{ i
1} { i

2}

{ Jij}

{ Jij}



  

q= 1
N∑i

N

 i
1 i

2
Note,
we measure:

qt = 1
N∑i

N

 i
1t  i

2t 

P J q=
1
T∑t=1

T

[q−qt ]=∑
ab

Pa⋅Pb⋅q−qab

for N “very large”

This is the overlap distribution
from 4 pages ago!

[A. P. Young, PRL 51 (1983) 1206]



  

about           :

 is called “weights”
 can have arbitrary values
 canonical expectation

values can be recovered:

Multimagnetic algorithm (MuM) 1:Multimagnetic algorithm (MuM) 1:
[B.A. Berg and W. Janke, PRL 80 (1998) 4771]

IDEA: 
don't sample Boltzmann but artifical distribution

P m=mexp[−H ]

〈A〉can=
〈W−1A〉

〈W−1〉

W m

A canonical simulation of the magnetisation

spontaneous magnetisation 

no information here,
states are 

highly suppressed

mexp [−H ]W m

use weights to make distribution
“simpler” to sample

sample “less” here

sample “more” here

q=∑
i=1

V

s i
1  s i

2 

order parameter:



  

W 0m=1

simulation

W i1m=
H im

W im

sampling

i=i1

Multimagnetic algorithm (MuM) 2:Multimagnetic algorithm (MuM) 2:

Which weights are good?

Def.: we want to sample a “flat” histogram

h m≈const.

Optimal: inverse weights: W m=1 /P m

small problem: we don't know this function 
(otherwise the problem already solved)

use iterative approache

This seems
to a bit strange, 
but it works:

histogram: weights:



  

histogram: weights:

iteration 1

iteration 2

iteration 3



  

histogram: weights:

iteration 4

iteration 5

iteration 9

!



  

We use:We use:
Parallel tempering (PT)Parallel tempering (PT) + multioverlap (MuQ) + multioverlap (MuQ)

Idea:
Simulate larger system with 
N “replica” at different T

T 1

T 3

T 4

T 2

Exchange at regular intervals
system i and i+1 with

P i , i1=min [1, exp E ]

〈 A〉T i=〈Ai〉

[K. Hukushima and K. Nemoto, 
J. Phys. Soc. Jpn. 65 (1996) 1604]

note:

 replica can decorrelate
at high temperatures

 expectation values for
at a specific temperature

 there is the freedom to 
adjust the number of
temperatures (replicas) and
the values



  

Now: combination of both (aka PT-MuQ)Now: combination of both (aka PT-MuQ)

min {1,exp[−mH ]W 'mq

Wmq }

simulate (e.g.) 1 sweep with MuQ
at N different temperatures

exchange replica

min {1,exp [n−mEn−Em]
Wm qnW nqm

Wm qmW nqn }

iterate to improve
weights



sample with fixed
weights



weights OK?




Note:
weights “belong” to a temperature

if every replica is simulated on a
different computer, all nodes have to have all
weights
in reality weights are computed with
a more “sophisticated” approach

Wmm

W i1q=
H iq

W iq

no!

yes!





  

Main objective: barrier heightsMain objective: barrier heights

Example: 2D Ising! Pmax L

Pmin L

Pmax L

Pmin L
~exp [FBL]≡L

Spin glasses: 

difficult structure, maxima/minima 
are scattered around

Question: 
how do we measure 

the size of the 
largest barrier?

fit: 
for 2D Ising the 
function is well 
known

FB~L~2L

L=30

L=100



  

T=
1−w1,2 w1,2 0 ⋯

w2,1 1−w2,1−w2,3 w2,3 ⋯

0 w3,2 1−w3,2−w3,4 ⋯

0 0 w4,3 ⋯

⋮ ⋮ ⋮ ⋱


FB≡logB

transition
matrix

P(q) 
from simulation

2nd largest
eigenvalue λ

Definition:

wi , j=
1
2
min [1, P x j

P xi ]

B=
1

N log

autocorrelation time for q:

free energy barrier:

Simple example: 
random walk

wi , j=
1
2
min [1, 1 /N1 /N ]=

1
2

flat distribution

P xi=
1
N T=

1/2 1/2 0 ⋯

1/2 0 1/2 ⋯
0 1/2 0 ⋯
0 0 1/2 ⋯

⋮ ⋮ ⋮ ⋱


Idea: 1d Markov chain/transition matrixIdea: 1d Markov chain/transition matrix
[B.A. Berg, A. Billoire and W.  Janke, PRB 61 (2000), 12143]

A=1 /n1 /n
⋮ with equilibrium

distribution
follows

T A=A 



  

Results 1a: Distribution                 for Results 1a: Distribution                 for ONEONE set of couplings set of couplings

EA model, V=8×8×8

P J q,T 

SK model,
N=512



  

Result 1b: What does the Result 1b: What does the averageaverage distribution  distribution 
of the  EAI model look like?of the  EAI model look like?

over the different couplingsover the different couplings

same valley,
i.e. large overlap

P q =[∑ab Pa⋅Pb⋅q−qab] J

a=b

different valleys,
 i.e. small overlap

a≠b

a=b

total inversion (of all spins) 
of one system compared to right peak

note the scale!
P(m) of Ising 
model has
log-scale



  

Result 1c: FSS (just for fun & 'cause its free ...)Result 1c: FSS (just for fun & 'cause its free ...)



  

MUQMUQ PTPT PT-MUQPT-MUQ

configuration (couplings) with large autocorrelation timeconfiguration (couplings) with large autocorrelation time



  

MUQMUQ PTPT PT-MUQPT-MUQ

configuration (couplings) with large autocorrelation timeconfiguration (couplings) with large autocorrelation time



  

Resistance is futile?Resistance is futile?

“well behaved” configuration “naughty” configuration

Quality criterion:

without PT: tunneling events 
with PT: ?

Idea: quadratic difference from
the mean:

P q=
P qP −q

2

[P q−P q]2=
1
4
[P q−P −q]2

[P −q−P q]2=
1
4
[P q−P −q]2

left:

right:

badbad

goodgood



  

Results 2: FSS fit of  Results 2: FSS fit of  

B∝expcN


Analytic result:
[H. Kinzelbach and H. Horner,
Z. Phys. B 84 (1991) 95]

=
1
3

fit range

[L.A. Pastur and M.V. Shcherbina, 
J. Stat. Phys. 62 (1992) 1]

A) SK model:

non-self-averaging (SK)

B) EAI model:

FB=logB

but goodness of fit ...

B∝cN


therefore, different fit:

[E. Bittner, W. Janke, 
EPL 74 (2006) 195] 



  

Results 3: Peaked probability distributionResults 3: Peaked probability distribution

A) SK model B) EA model

D FB /F Bmed


no scaling,
i.e. no selfaveraging!

probability density: integrated probability 
density:

in contrast:
barrier size 
in energy is 
selfaveraging quantity



  

Results 4: Results 4: Probability density distributionProbability density distribution
of the barrier sizesof the barrier sizes

A) SK model B) EA model

FB

F  ; ; x =exp [−1 x− 
−1/

]
Fit integrated probability density:

0
fat tailed (algebraic)
Fréchet distribution

TT c



  

Results 5: Functional form of the overlap distributionResults 5: Functional form of the overlap distribution

P q=c0e
−c1N q−qmax

∞ 
x mean-field (Parisi):

3D (Moore):
for qqmax

∞

quality of the fit:
consistent fits can be
only achieved over a
“somewhat” restricted
range

ln[−lnP qc0
N ]−lnN=lnc1x ln q−qmax

∞ 

2xlog, then fit: 

T=0.7

x=3
x=6 (?)



  

Zoom of the last plot:Zoom of the last plot:



  

ConclusionsConclusions::

PT is good to decrease the autocorrelation time
MuQ gives the full          information
The combination of PT+MuQ makes it possible
to get           down to 

the free energy barriers of the SK and EA model are
a) non-self-averaging
b) follow the Fréchet extreme-value distribution
the free energy barriers of the SK model diverge
with an exponent of 
the last is not true for the EA model!

A) Algorithmic

B) Physical

T≈0.5T cP q

P q

=1 /3
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Finite temperature transition in 3D: Yes/No?

T≈1.1 g sg≈0.75

Universality class: 2  nd order/BKT

Supplement 1: Supplement 1: 

[H. G. Ballesteros et al.,PRB 62 (2000) 14237]

Correlation length divided by system size:

Berenzinskii-Kosterlitz-Thouless (BKT)
transition

Early MC [Bhatt and Young, PRL 54 (1985) 924]:
line of critical points  terminating 
at T=1.2 similar BKT in 2D XY 

Yes

“simple” 2nd order transition



  

Four dimensions or higher?

Simpler to simulate (well separated from the lower critical dimension)
Finite-temperature well established (Tc~1.75) by Binder-parameter crossing



  

Do the weihgts saturate?

Supplement 2: Supplement 2: 

iteration 1-9:

iteration 20-28:

Yes



  



  

And the explanation?

J1=2∣ J2∣

J10

J20

T is very low,
doping around 30%,
n.n.: ferromagnetic

n.n.n: anitferromagnetic

frustration of the lower spin:
cannot decide if he wants to satisfy

n.n. neighbour by
or n.n.n. neighbours by

Sketch:



  

Is frustration sufficient for a spin glass?

NO! Counter example: 
antiferromagnetic triangular lattice

fully frustrated
no co-operative freezing transition (Mydosh: slow 
blocking to ground state with large mag. fluctuations)

here:
4 other (symmetric 
configurations)

Add: mixed interactions, i.e. 
ferromagnetic (J>0) and antiferromagnetic (J<0)



  

Enough?

NO! Counter example: 
Kagome lattice

Add: randomness/disorder, i.e.
site randomness = distribution of distances 

between spins
bond randomness = nearest-neighbour 

interaction varies (+/-J)

Finally: randomness + mixed interaction

can lead to frustration spin glassspin glass



  

RKKY=Ruderman, Kittel, Kasuy, Yosida

Hamiltonian: H= J 2k F r  i j Jx = J0
cosx 
x3

from: Morgownik and Mydosh (1983)

r

sea of conduction electrons from 
non-magnetic metal host-matrix,
e.g. Au, Cu, Pt, ...

impurities, e.g. Fe, Mn, ...



  

How to create randomness ?

take non-magnetic metall (Au, Cu, Pt ...) 
+ elements with magnetic moment (Mn, Fe, Gd, Eu, ...)

archetypes are
noble metal alloys:
(also called: 
canonical SG)

Cu
1-x

Mn
x

Au
1-x

Fe
x

random site SG
random bond SG

Rb
2
Cu

1-x
Co

x
F

4
Fe

1-x
Mn

x
TiO

3

(2D) (3D)



  

RSB picture for 
finite dimensions
short range interactions

(a) there are ∞ many pure states 
with varying overlaps

(b) predictions derived from (a)

RSB picture for 
finite dimensions
short range interactions

(a) there are ∞ many pure states 
with varying overlaps

(b) predictions derived from (a)

droplet picture (for  
finite dimensions
short range interactions)

(a) there are 2 pure states 
mapped to each other (like ferromagnet)

(b) scaling of free energy of droplet
(c) predictions derived from (a) and (b)



  

Detour (or cul-de-sac): e.g.: Wang-LandauDetour (or cul-de-sac): e.g.: Wang-Landau

pX1 X2=min [ gX1

gX2 ]
Update rule for
state       to      :

result of an (unbiased) 5x5x5 EAI SG:

X1 X2

gX1,2=frequency X1,2×f iteration

gets somehow smaller

criterion (e.g.):

hmin
hmax 

≈c=0.8

gets worse for gets worse for 
larger system!larger system!

#m = 0.581927244582048
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