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Introduction

we study low temperature and ground state configurations of homopolymers

tube model of J.R.Banavar, A.Flammini, D.Marenduzzo, A.Maritan and A.Trovato,
J.Phys.:Cond.Matt.15:1787(2003)

- statistical ensemble

- 3d flexible tubes with volume exclusion through thickness

- attractive homopolymer interaction at some distance scale

→ volume exclusion and potential attraction compete within a compact polymer with a
compactness that can be tuned, which gives rise to secondary structure

- the global radius of curvature is a 3-point function, different from the standard two point
approach of hard sphere volume exclusion, we are studying effective theories

- the global radius of curvature favors helices as low temperature configurations in the
homopolymer in 3d

- the global radius of curvature favors an ”asymmetric” and parallel alignment of close
polymer sections, there is a possible analogy to the condensation of non-spherical
atoms, that show liquid crystal phases
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The Model

2d and 3d continuum chains of N monomers at fixed bond | ~xi, ..., ~xj |= 1

conf = [~x1, ..., ~xN ]

Lennard Jones homopolymer Hamiltonian

Hpot =
∑

i<j

Vint(rij)

Vint(r) = 4([
RLJ

21/6r
]12 − [

RLJ

21/6r
]6)

with scales RLJ = 1 or RLJ = 21/6 = 1.1225

with the thick polymer partition function at T and thickness D

Z(β = 1/T , D) =
∑

conf

e−βH Θ(2Rgrc − D)

Monte Carlo evaluation of Z in 0.001 ≤ T ≤ O(1)
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The Thickness

any 3 nondegenerate points ~x, ~y, ~z define a unique circle through these points with a
radius of curvature: Rrc

which can be calculated easily

Rrc(~x, ~y, ~z) =
| ~x − ~y | | ~x − ~z | | ~y − ~z |

4AT riangle(~x, ~y, ~z)

AT riangle(~x, ~y, ~z) =
√

s(s − a)(s − b)(s − c)

s =
a + b + c

2
with a =| ~x − ~y | ; b =| ~x − ~z | ; c =| ~y − ~z |

the global radius of curvature Rgrc is defined as the minimum

Rgrc = min{Rrc(~x1, ~x2, ~x3), Rrc(~x1, ~x2, ~x4), ..., Rrc(~xN−2, ~xN−1, ~xN )}

on the set of all radii of curvature

providing a regularization of thick polymers with thickness D = 2Rgrc

which formally is a 3-point function
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A Thick Polymer Example

at D = 2.8 and we consider a N = 10 polymer, which satisfies

Θ(2Rgrc − D) = 1 or Rgrc ≥ 1.4

any single red dot of the figure then also solves Θ(2Rgrc − D) = 1, now for the ”N + 1

body” problem

O.Gonzalez and H.Maddocks, PNAS 96:4769 (1999), a numerical calculation of the
length of perfect knot shapes
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Polymers on Circles

there are periodic molecules, one of them is a circle

Rgrc Nmon(2π)

0.6774 3

0.7071 4

0.8507 5

1.0000 6

1.1524 7

1.3066 8

1.4619 9

1.6180 10
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2d Homopolymer

we have calculated low temperature configurations at T = 1/1000 with RLJ = 1 as a
function of D at values Nmon(2π) = 3, 4, 6, 7, 8, 10 for the number of monomers on
circular shaped polymers
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the continuum of thickness values is punctured by a finite set of thickness values Rgrc,
that correspond to regular lattices (crystals) either in the polymers point set, or its
radius-dual

- for Nmon(2π) = 3, 4, 6 ( Rgrc = 0.6774, 0.7071, 1.0 ) we observe
triangular,simple cubic and honeycomb lattices in the polymers point set

- at Nmon(2π) = 3, 4, 5, 6, 7, 8 we find sharp peaks in inter-distance distributions on the
dual point set
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Crystals in 2d

dual lattices at Nmon(2π) = 6, 7, 8 ( Rgrc = 1.0, 1.1524, 1.3066 ):
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inter-distance distributions on the dual point set:
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3d Homopolymer

Maritan et. al. in “Optimal shapes of compact strings “, Nature 2000 , upon imposing
compactness of the helix along its z-direction proposed the Maritan helix

x = Rcyl sin(φ) y = Rcyl cos(φ) z = p
φ

2π
,

reducing the 2 parametric class of helix configurations into a 1 parametric one, we choose
Rgrc as a parameter

Rgrc Nmon(2π) p Rcyl p/Rgrc p/Rcyl

0.7070 3.7050 1.2323 0.6288 1.7430 1.9599

0.8500 4.6640 1.5522 0.7559 1.8261 2.0536

0.9990 5.5458 2.0015 0.8689 2.0035 2.3035

1.1520 6.4750 2.3694 0.9977 2.0568 2.3748

1.3060 7.4139 2.7042 1.1323 2.0706 2.3883

1.4610 8.3589 3.0217 1.2701 2.0682 2.3745

... ... ... ... ... ...

3.9890 23.2052 8.6060 3.4404 2.1574 2.5015
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PDB’s R1ij molecule

α-helices are Maritan helices with Rgrc ≈ 0.71 and Nmon(2π) ≈ 3.6 − 3.8 at a pitch
p ≈ 1.25
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Secondary Structure.

large scale simulation of ground states and thermodynamic properties on N = 8, ..., 13

with ELP, WL, MUCA, PATE methods at a multitude of Rgrc values in .0.01 ≤ T ≤ O(1):
T. Vogel, M. Bachmann, W. Janke and T.N., ”Thickness-Dependent Secondary Structure
Formation of Tubelike Polymers”, accepted at EPL, at

RLJ = 21/6 = 1.1225... (CHARM)

Findings:

the dominance of crystalline structure in 2d is not repeated in 3d, we find one particular
point in parameter space Rgrc = 0.7071 = 1/

√

(2) and RLJ = 1, where the polymers
point set for N < 48 is that of a simple hyper cubic lattice

we find 4 pseudophases, which with increasing Rgrc can be characterized as follows

PHASE 1: in 0.5 ≤ Rgrc ≤ 0.92 polymers are of helical structure. This phase contains
at Rgrc(α) = 0.684 natures α-helix with

Nmon(2π) = 3.6 ΘTorsion = 41.6

which for N ≤ 9 is an exact ground state
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Secondary Structure..

PHASE 2: in 0.92 ≤ Rgrc ≤ 1.1 − 1.2 the helices open up and planar conformations like
β-hairpins become dominant, this phase contains the point Rgrc = 1 at T = 0, which in
2d gave rise to the honeycomb lattice. In the 3d theory for N = 8 there is a ground state,
that is an exact planar hairpin at Rgrc = 1.

PHASE 3: in 1.1 − 1.2 ≤ Rgrc ≤ N/2π we find ringlike polymers. A subset of these be
classified as twisted circles. The existence of this phase is caused by he non-vanishing
potential at large distances and is bounded from above by a ground state,
that is an circle.

PHASE 4: in Rgrc > N/2π we find rodlike structures

some data at N = 9:

α-helix
0.710.700.690.680.67

-1.1-1.2-1.3-1.4-1.5

ρ

E

min/N
1.71.61.51.41.31.21.11.00.90.80.70.6

0-0.2-0.4-0.6-0.8-1-1.2-1.4-1.6-1.8-2
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Secondary Structure...

δ

γβα

T

ρ

0.40.30.20.101.21.11.00.90.80.70.6
ρ = 0.60 0.69 0.73 0.78 0.88 0.92 1.20
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Secondary Structure....

phase type views of representative example

α helix

β sheet

γ ring

δ rod
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Conclusion

for homopolymers and given a class of potential functions: LJ 6-12, non-vanishing at
large distance

with scales: RLJ = 21/6 and −1 = Vint|min = Vint(RLJ )

and in the statistical ensemble of chains

we find a ”primitive” hierarchy of secondary structures as a function of the thickness

which with increasing Rgrc exhibits: helices, sheets, rings and rods

there is the non-trivial information on the location of the pseudophases. The pseudo
critical values Rgrc that bound the four pseudophases are geometric scales ! At
temperature T = 0 we have 0.92, 1.2 − 1.3, N/2π.

the four pseudophases

avoid a crystal

allow for α-helices and β sheets

and as far nature is concerned: we hope for the design of nano-sized molecular
machines, that exhibit similar structures, proteins exhibit similar structures
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Outlook

The abundances of knots in polymers with secondary structure. Knots in proteins are
very rare /Virnau, Mirny, Kadar, PLoS Comput Biol. 2006 September; 2(9): e122/ , while
knots in polymers without secondary structure are frequent /Virnau, Kantor, Kadar, J. A.
CHEM. SOC., 2005, 127 15102./.

probabilities to find any knot in a polymer model with grc and left (less), right (more)
helical secondary structure as a function of the inverse temperature for
N = 100, 200, 300. The model does not contain a polymer stiffness term.
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