Quantitative prediction of the phase diagram of alkanes in polar solvents

B. M. Mognetti^{1*}, L. Yelash¹, P. Virnau¹, W. Paul¹, K. Binder¹,
M. Müller², L. G. MacDowell³, and M. Oettel¹

Institut für Physik, Johannes Gutenberg–Universität, Mainz, Germany
 Institut für Theoretische Physik, Göttingen, Germany
 Dpto. de Quimica Fisica, Universidad Complutense, Madrid, Spain

* SPEAKER

New Developments in Computational Physics Leipzig 27/11/2008

OUR RESEARCH

- Development of a Coarse Grained model (CGm) for complex fluids (solvents+polymers)
 - <u>Realistic</u> \Rightarrow predictive
 - Simplified \Rightarrow accessible to numerical investigations (MC and EOS)
- We consider dipolar (NH₃, N₂O, H₂S, ...) and quadrupolar solvents (CO₂, C₆H₆, ...) and their mixtures with alkanes (C_nH_{2n+2})
 - We improve the previous Lennard-Jones CGm (P. Virnau et al. JCP 121, 2169) by including a *polar spherically averaged* interaction (В.М. Mognetti et al. JCP 128, 104501)
- GOAL: avoid the use of *ad-hoc* extra parameters in mixing rules \Rightarrow <u>PREDICTIVITY</u> (no mixture experiments to fix the CGm)

$$\epsilon_{sp} = \xi \sqrt{\epsilon_s \epsilon_p}$$

PLAN OF THE TALK

- The CGm for quadrupolar solvents: deriving the model and its validation using pure component experimental result
- The CGm for dipolar solvents: deriving the model and its validation using pure component experimental result
- Mixture phase diagram: validation of the new model using mixture with alkanes
 - Comparison with the previous modeling (LJ and and $\xi < 1$)
 - Comparison of the small residual discrepancies with apolar mixtures ones
- Conclusion

COARSE GRAINING

 $C_{16}H_{34}$ - chain of 5 monomers

 CO_2 - a single LJ-bead

Bead–spring model : LJ+FENE potential

A bead-spring model for chain molecules: Lennard-Jones plus FENE potential

EOS can be derived for LJ+FENE!

THE MODEL (dipolar) PCCP, submitted

• We start from the Stockmayer potential SM, LJ+DD beads

$$V^{(\mathsf{F},\mathsf{D})} = 4\epsilon_{s} \left[\left(\frac{\sigma_{s}}{r}\right)^{12} - \left(\frac{\sigma_{s}}{r}\right)^{6} \right] + \frac{\mu^{2}}{r^{3}} \left[\vec{n}_{i} \cdot \vec{n}_{j} - \frac{3}{r^{2}} (\vec{n}_{i} \cdot \vec{r}_{ij}) (\vec{n}_{j} \cdot \vec{r}_{ij}) \right]$$

• Averaging over \vec{n}_i , $\vec{n}_j \Rightarrow$ isotropic short ranged potential (G. Stell et al. Mol. Phys. 27, 1393)

$$V^{(\mathsf{A},D)} = 4\epsilon_s \left[\left(\frac{\sigma_s}{r}\right)^{12} - (1+\lambda) \left(\frac{\sigma_s}{r}\right)^6 \right]$$
$$\lambda = \frac{1}{12\epsilon_s \sigma_s \kappa_B T}^{\mu^4} = \lambda_c \frac{T_c^{\text{exp}}}{T}$$

• ϵ_s , σ_s and λ_c determined using T_c^{exp} , ρ_c^{exp} and μ^{exp} (or an adjusted value of dipolar moment μ^{adj})

THE MODEL (quadrupolar) JCP, 108 (2008); PRE 77 (2008)

• Solvent molecules \Rightarrow (LJ+QQ)-beads

$$V^{(\mathsf{F},Q)} = 4\epsilon_s \Big[\left(\frac{\sigma_s}{r_{ij}}\right)^{12} - \left(\frac{\sigma_s}{r_{ij}}\right)^6 \Big] + \frac{3Q^2}{4r_{ij}^5} f(\Omega_i, \Omega_j)$$

• Averaging over $\Omega_i \Rightarrow \underline{\text{isotropic}}$ potential (G. Stell et al. Mol. Phys. 27, 1393; E. Müller et al. Ind. Eng. Chem. Res. 42, 4123)

$$V^{(\mathsf{A},Q)} = 4\epsilon_s \left[\left(\frac{\sigma_s}{r_{ij}} \right)^{12} - \left(\frac{\sigma_s}{r_{ij}} \right)^6 - \frac{7}{20} q_c \frac{T_c^{\mathsf{exp}}}{T} \left(\frac{\sigma_s}{r_{ij}} \right)^{10} \right]$$
$$q_c = \frac{Q^4 \sigma_s^{-10}}{\epsilon_s k_B T_c^{\mathsf{exp}}}$$

• ϵ_s , σ_s and q_c determined using T_c^{exp} , ρ_c^{exp} and Q^{exp} (or an adjusted value of quadrupolar moment Q^{adj})

 ϵ_0 and σ_0 being the parameters for the uncut LJ potential (i.e. if $\mu=0$)

THE MC METHODS Virnau et al., JCP 120, 10925

- Successive Umbrella Sampling
 - Algorithm constrained to sample configurations with n or n+1 particles (if n+2 or n-2 particles are generated the move is rejected)
 - In such a way P(n+1)/P(n) is determined
 - Spanning in n one is able to reconstruct P(n) and F(n)= log P(n) with the interface tension (Binder PRA25, 1982) $\gamma = \Delta F/2L^2$

PURE QUADRUPOLAR SUBSTANCES

J. Chem. Phys. **128**, 104501, (2008)

CO₂: Q_{exp} (q_c=0.387) and Q_{adj} (q_c=0.470)

CO₂: Q_{exp} (q_c=0.387) and Q_{adj} (q_c=0.470)

CO₂: Q_{exp} (q_c=0.387) and Q_{adj} (q_c=0.470)

CO₂ ATOMISTIC MODELS

We also perform well when compared to fully atomistic models (which are too complicated for mixtures)

CO₂ ATOMISTIC MODELS

We also perform well when compared to fully atomistic models (which are too complicated for mixtures)

C₆H₆: $Q_{exp} = 12DÅ(q_c=0.247)$ and $Q_{adj} = 13.4DÅ(q_c=0.38)$

C₆H₆: $Q_{exp} = 12DÅ(q_c=0.247)$ and $Q_{adj} = 13.4DÅ(q_c=0.38)$

C₆H₆: $Q_{exp} = 12DÅ(q_c=0.247)$ and $Q_{adj} = 13.4DÅ(q_c=0.38)$

PURE DIPOLAR SUBSTANCES

Phys. Chem. Chem. Phys., submitted

NH3: $\mu_{exp}=1.482D$ ($\lambda_c=0.131$) and $\mu_{adj}=1.65D$ ($\lambda_c=0.218$)

NH3: $\mu_{exp}=1.482D$ ($\lambda_c=0.131$) and $\mu_{adj}=1.65D$ ($\lambda_c=0.218$)

NH3: $\mu_{exp}=1.482D$ ($\lambda_c=0.131$) and $\mu_{adj}=1.65D$ ($\lambda_c=0.218$)

N₂O:
$$\mu_{exp}=0.166D \ (\lambda_c=1.75\cdot 10^{-5})$$
 and $\mu_{adj}=1.25D \ (\lambda_c=0.060)$

N₂O: $\mu_{exp}=0.166D \ (\lambda_c=1.75\cdot 10^{-5}) \text{ and } \mu_{adj}=1.25D \ (\lambda_c=0.060)$

N₂O: $\mu_{exp}=0.166D \ (\lambda_c=1.75\cdot 10^{-5}) \text{ and } \mu_{adj}=1.25D \ (\lambda_c=0.060)$

POLAR FLUIDS WITH ALKANES

EXPENSIVE SIMULATIONS

• Two methods

TPT1 – MSA FAST BUT INACCURATE IN THE CRITICAL REGION (L. G. MacDowell)

• QUADRUPOLAR EXAMPLES (CO₂). IE/DF an integral equationdensity functional theory (M. Oettel)

ALKANES PHASE DIAGRAM (P. Virnau)

ALKANES PHASE DIAGRAM (P. Virnau)

ALKANES PHASE DIAGRAM (P. Virnau)

QUADRUPOLAR MIXTURES

J. Chem. Phys., accepted

MONOMER MIXTURES ($CH_4 + CO_2$)

using: i) simple LJ ($q_c=0$), and ii) $q_c=0.47$ (the adjusted value)

Note: mean-field theories such as TPT1-MSA overestimate the critical pressure and thus predict too large two-phase loops (can be improved by MC)

MIXTURES: $CO_2 + C_{16}H_{34}$

(P. Virnau et al. JCP **121**, 2169)

• (left) <u>Isotherm</u>: \star are MC results (T=486 K), \blacksquare exp. results (right) <u>Critical line</u>: the full line are previous MC with $\xi \leq 1$

- Note the nice agreement with experiments at low T

- The results with $q_c > 0$ ($\xi = 1$) agree with previous simulations in which $\xi < 1$ has been tuned (reminder $\epsilon_{sp} = \xi \sqrt{\epsilon_s \epsilon_p}$)

DETERMINING THE CRITICAL POINT

• Order parameter (neglecting pressure mixing, M. Fisher)

$$\mathcal{M} = N_p + x_1 \cdot N_s + x_2 \cdot E_{\text{tot}}$$

- x_1 , x_2 (like μ_s and μ_p), tuned in order to get the best agreement between $P(\mathcal{M})$ and the universal Ising plot (N. Wilding)
- FSS analysis with x_1 determined minimizing the cumulants $(x_2 \approx 0)$

DIPOLAR MIXTURES

Phys. Chem. Chem. Phys., submitted

MONOMER MIXTURE $CH_4 + NH_3$

• Critical line

• The new model can reproduce *i*) the proper type of phase diagram and *ii*) quantitative significant data

$NH_3 + C_{16}H_{34}$

• Critical line and an isothermal slice (for $NH_3+C_{16}H_{34}$)

• Agreement with experiment not yet perfect

CONCLUSIONS

- We have introduced two CGm for dipolar and quadrupolar solvents
- The models are highly portable and can be immediately derived for a given solvents (without additional efforts)
- Phase diagrams of the pure substances are in good agreement with experiments (even if compared with atomistic models)
- Using simple combining rules, mixture phase diagrams are nicely in agreement with experiments
- Residual discrepancies are comparable with apolar systems ones

ACKNOWLEDGEMENTS

- BASF AG (Ludwigshafen) for financial support
- NIC (Jülich) and (ZDV Mainz) for CPU time
- F.Heilmann, J.Horbach, E.Müller, H.Weiss for discussions

POLYMER MIXTURES: first examples

- TPT1 cannot reproduce the critical region (being a Mean-Field theory)
- At lower temperature the agreement seems to be worse (quality of the CGm?)

POLYMER MIXTURES: first examples

- TPT1 cannot reproduce the critical region (being a Mean-Field theory)
- At lower temperature the agreement seems to be worse (quality of the CGm?)

MIXTURES: other apolar cases TPT1

- We confirm the previous scenario in which discrepancies are bigger
- We have to investigate the low temperature (high pressure) discrepancies with MC simulations (in progress!)

A SIMPLER CASE (Xe + Kr)

ANGLE-DEPENDENT POTENTIALS

Does the not-averaged model work even better? No (B. M. Mognetti et al. Phys. Rev. E 77, 041506)

• (left) Same ϵ_s , σ_s , and Q

• (right) Same T_c , ρ_c , and Q

 \Rightarrow We learn *i*) the importance of <u>fixing the CP</u> and *ii*) we are encouraged to use the averaged model

TPT1-MSA EQUATION OF STATES

- Strategy: to know how good is the EOS and where can be used
- Previous project: TPT1-MSA (L. G. MacDowell et al. JCP 113, 419; JCP 117, 6360)
 - Potential mapped onto two Yukawa potentials $[\mathcal{Y}_1(r), \mathcal{Y}_2(r)]$ which allow us to compute g(r) and the thermodynamics (Y. Tang et al. JCP **99**, 9828; FPE **134**, 21)
- We generalize the previous considerations using two more Yukawa tails to fit the quadrupolar part of the potential

$$V_{q_c}^{(\mathsf{A})}(r) = \begin{cases} d_{\mathsf{HS}}(q_c, T) &, r < r_0 \\ \left(\mathcal{Y}_1(r) + \mathcal{Y}_2(r)\right) - \frac{7}{20}q_c \frac{T_c}{T} \left(\mathcal{Y}_3(r) + \mathcal{Y}_4(r)\right) &, r > r_0 \end{cases}$$

plus proper one fluid approximation for q_c in the mixtures

MC vs. MSA-TPT1 EOS

Pure substances. Nice agreement far from the critical point.

H₂S: $\mu_{exp}=1.1D$ ($\lambda_c=0.023$)


```
H<sub>2</sub>S: \mu_{exp}=1.1D (\lambda_c=0.023)
```


H₂S: $\mu_{exp}=1.1D \ (\lambda_c=0.023)$

REMAPPING $V^{(A,D)}$ in V^{LJ}

•
$$V^{(\mathsf{A},\mathsf{D})} = 4\epsilon_s [(\frac{\sigma_s}{r})^{12} - (1+\lambda)(\frac{\sigma_s}{r})^6] = 4\tilde{\epsilon}_s [(\frac{\tilde{\sigma}_s}{r})^{12} - (\frac{\tilde{\sigma}_s}{r})^6]$$

 $\tilde{\epsilon}_s = \epsilon_s (1+\lambda_c T_c/T)^2$ $\tilde{\sigma}_s^6 = \sigma_s^6/(1+\lambda_c T_c/T)$

- We cut and shift (at $2 \cdot \tilde{\sigma}_s^{7/6}$) the effective LJ $\Rightarrow \epsilon_s$ and σ_s rescaled by proper known factors

- Having a set of simulation results for the cut and shifted LJ potential $\{T_i^*, \rho_{i,q}^*, \rho_{i,l}^*, p_i^*, \gamma_i^*\}$ (and knowing ϵ_s and σ_s)
 - The physical temperature T_i must satisfy the following relation

$$T_i = \frac{\tilde{\epsilon}_s T_i^*}{k_B} = \frac{T_i^*}{k_B} \epsilon_s (1 + \lambda_c \frac{T_c}{T_i})^2$$

- Knowing T_i one can compute $\tilde{\epsilon}_s$ and $\tilde{\sigma}_s$ and mapping all the simulation quantities in physical unit (using standard formula)

FIXING THE CGm, DIPOLAR MODEL

- At the critical point $T = T_c$ the mapped LJ potential must be equal to the LJ interaction of the apolar model $\tilde{\epsilon}_s(T_c) = \epsilon_0 \ \tilde{\sigma}_s(T_c) = \sigma_0$
- Using the mapping formula $\epsilon_s o ilde{\epsilon}_s, \ \sigma_s o ilde{\sigma}_s$ at the critical point

$$\frac{\epsilon_s}{\epsilon_0} = \frac{1}{(1+\lambda_c)^2} \qquad \qquad \frac{\sigma_s^6}{\sigma_0^6} = (1+\lambda_c)$$

and using the expression $\lambda_c = \lambda_{c0} (\epsilon_0/\epsilon_s) (\sigma_0/\sigma_s)^6$ we finally conclude

$$rac{\epsilon_s}{\epsilon_0} = (1-\lambda_{c0})^2 \qquad rac{\sigma_s{}^6}{\sigma_0{}^6} = rac{1}{(1-\lambda_{c0})} \qquad \lambda_c = rac{\lambda_{c0}}{1-\lambda_{c0}}$$

Notice that for $\lambda_{c0} \rightarrow 1$ the mechanism break down (also in the quadrupolar case?)

• Alternatively use $T_c(\lambda_c)/T_c(0) = (1 + \lambda_c)^2$ and $\rho_c(\lambda_c)/\rho_c(0) = \sqrt{1 + \lambda_c}$ in the previous slide

ON THE USE OF MAGNIFIED VALUES FOR μ

• Is it only our problem? <u>No</u>

	$\mu_{\sf phys}/{\sf D}$	μ_{opt}/D our CGm	$\mu_{\rm opt}/{\sf D}$ SM FPE 220 , 1
NH ₃	1.482	1.482	_
H ₂ S	1.1	1.1	1.64
CCl ₂ O	1.17	2	3.035
N ₂ O	0.166	1.25	1.76
C ₆ H ₅ Cl	1.7	3.5	-

- We use optimal dipolar moments magnified by the same order of magnitude of the SM potential
- Possible explanations
 - Magnification related to polarizable effects
 - Point-like approximation is not good

MONOMER MIXTURES $(CH_4 + C_6H_6)$ using: *i*) simple LJ (Q=0), *ii*) the experimental value Q=12 DÅ, and *iii*) the adjusted one Q=13 DÅ

