Scaling behavior of domain walls at the T=0
ferromagnet to spin-glass transition
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N = L x L Ising spins o; = +1 on square lattice
Periodic boundary conditions in one direction

Edwards-Anderson Hamiltonian: H(o) = — 3 Jjoio;

interaction strength: frustration:
50 — 72

Jj <0 : —J\— | |
quenched disorder /Q’_‘/\_\@x

Here: “Gaussian-like” distributed bonds
P(J)=(1—-p) e 2)\V2r + pi(J—1)

p<pc: Spin-glass (SG)
p>pc: Ferromagnet (FM)
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Domain Walls (DWs)

B Exact ground states (GSs) using sophisticated matching
algorithms (up to L = 512)

M DWs defined relative to 2 spin configurations o(1)/(2)

m o

o(@;

|

Separates regions of agreeing/disagreeing spin orient.

[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]

DW energy: N S N\
SE =2 Z JI_/,JIO)UJU) N /S
{iHeD SN S/

D = bonds satisfied by 1 config. N /N /S
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Domain Walls (DWs)

B Exact ground states (GSs) using sophisticated matching
algorithms (up to L = 512)

M DWs defined relative to 2 spin configurations o(1)/(2)
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o(1): GS for periodic boundary conditions (BCs)
0@ GS for antiperiodic BCs

Separates regions of agreeing/disagreeing spin orient.

[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]

DW energy: NN/ N\
SE=2Y" Jjoi otV NN N N
(e LN N N\

D = bonds satisfied by 1 config. AN NN
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Domain Walls (DWs)

B Exact ground states (GSs) using sophisticated matching
algorithms (up to L = 512)

M DWs defined relative to 2 spin configurations o(1)/(2)
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o(1): GS for periodic boundary conditions (BCs)
0@ GS for antiperiodic BCs

Separates regions of agreeing/disagreeing spin orient.

[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]

DW energy: N/ X X
SE=2Y" Jjoi otV N XXX
(e LN X X,

D = bonds satisfied by 1 config. N/ N x|
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Domain Walls (DWs)

Exact ground states (GSs) using sophisticated matching

algorithms (up to L = 512)

o(1): GS for periodic boundary conditions (BCs)

0@ GS for antiperiodic BCs

L |
M DWs defined relative to 2 spin configurations o(1)/(2)
|
L |

Separates regions of agreeing/disagreeing spin orient.

[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]

DW energy: PN
0E =2 Z J,-jalmajm .\
(ieD L/

D = bonds satisfied by 1 config. AN
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Domain Walls (DWs)

B Exact ground states (GSs) using sophisticated matching
algorithms (up to L = 512)

M DWs defined relative to 2 spin configurations o(1)/(2)

L |

|

o(1): GS for periodic boundary conditions (BCs)
0@ GS for antiperiodic BCs

Separates regions of agreeing/disagreeing spin orient.

[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]

DW energy: N EX X
bE=2Y dyollofM N % x|
(e oONEX X

D = bonds satisfied by 1 config. N N ixd
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Dual Graph

M Construct weighted graph G = (V, E,w)
V(G) elementary plaquettes (EP)
E(G) connect EP with common side

w energy contribution to DW
00— 0—0— Consider GS o for periodic BCs:
< 0 1 | (i) Bond satisfied for o, e.g.
Qoo — —1:w>0
AN w20
T+2_T+T_ (if) Bond not satisfied for o, e.g.
-0—0—0—0— T ' T rw<0



Dual Graph

M Construct weighted graph G = (V, E,w)
V(G) elementary plaquettes (EP)
E(G) connect EP with common side
w energy contribution to DW

N

Consider GS ¢ for periodic BCs:

(i) Bond satisfied for o, e.g.

1—1:wzo

(if) Bond not satisfied for o, e.g.

bM~1:w<o0
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Dual Graph

M Construct weighted graph G = (V, E,w)
V(G) elementary plaquettes (EP)
E(G) connect EP with common side

w energy contribution to DW
‘.
e--o o--¢ no loops with negative weight:
‘---’ ¢--e w(C): ZJ,‘/U,’UJ'ZO
o-- 9 (iec
‘0

M DW: minimum-weight (top, bottom) path
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Minimum-Weight Paths

B G: undirected graph, allowing for negative edge weights
B Here: standard minimum-weight path algorithms, e.g.
Bellman-Ford, Floyd-Warshall, don’t work
B Minimum-weight path problem on dual requires matching
techniques
i) Dual graph — auxiliary graph
ii) Find minimum-weighted perfect matching

(MWPM)
iii) Interpret MWPM as min.-weight path

[R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows]
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Previous results

W Excitation energy of DWs: &
(|0E]) ~ LY 0=-0.287(4)
[AKH and A.P. Young, PRB 2001]

M Scaling behavior of DWs: L
() ~ L% di=1.274(2)
(ry ~ L%, d-=1.008(11)
[OM and AKH, PRB 2007]

-t

g %

DWs can be described by Schramm-Loewner evolutions (SLES)
[Amoruso et. al., PRL 2006], possibility to relate exponents via

dr=1+3/[4(3+0)]

Universality: SLE scaling relation also valid for p>07?



Location of the critical point

MW Magnetization: m, = |, 04]/L2
Binder parameter: b, = (3 — \"LL)/2

1

09 |

bi(p)

(mf)?

Finite size scaling form:
bi(p) ~ fil(p — pe)L']

pe = 0.660(1)
v =1.49(7)
Quality: S=1.3

M Critical exponents in agreement with numerical values
v =1.55(1) and 5 = 0.09(1) found for +J model
[Amoruso and A.K. Hartmann, PRB 2004]
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Location of the critical point

MW Magnetization: m, = |, 04]/L2

Binder parameter: b, = (3 — ‘") /2

1

0.8

0.6

my(p)

0.4 BA X

4

0.2

(mf)?

Finite size scaling form:

mi(p) ~ L= B[(p—pe)L1V"]

pe = 0.660(1)
v =1.49(7), 3 = 0.097(6)
Quality: S=1.8

M Critical exponents in agreement with numerical values

v =1.55(1) and 5 = 0.09(1) found for +J model
[Amoruso and A.K. Hartmann, PRB 2004]
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Scaling behavior of DWs

M Scaling analysis up to L =512

14 df d/ 02

0.00 1.274(2) 1.008(11) -0.287(4)
0.60 1.275(1) 1.003(3)  -0.28(2)
0.64 1.275(2) 1.012(4)  -0.28(4)
0.66 1.222(1) 1.002(2)  0.16(1)
0.68 1.05(2)  0.74(3) 0.35(3)
072 1.022(1) 0.698(6) 0.27(2)

where ¢(0E) =

(6E2)— (6E)2~ L'

1.3

1.25

1.2

é dfeff ( L )

0.01 0.02
1/L

Ml Effective exponents df'™: describe the scaling of (¢) for 4 successive
values of L according to (¢) ~ L%

Ml Spin glass phase up to p close to pe: Scaling behavior of DW energy
and DW length consistent with scaling relation

derived from SLE processes

dr =1+ 3/[4(3 + 0)]
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Groundstate study on 2D Ising spin glasses with short
ranged interactions

DWs obtained via minimum-weight path approach
Scaling behavior of DWs near SG-FM transitionat T =0

p < pc: SLE scaling relation consistent with exponents
found from numerical simulations
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