Tethered Monte Carlo: computing the effective potential without critical slowing down

Victor Martin-Mayor

Departamento de Física Teórica I UNIVERSIDAD COMPLUTENSE DE MADRID

In collaboration with: L.A. Fernández and David Yllanes Nuclear Physics **B 807**, 424-454 (2009) (arXiv:0806.0543)

• All known Monte Carlo methods suffer critical or *exponential* slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...

- All known Monte Carlo methods suffer critical or *exponential* slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...
- Can we use external information (e.g. order parameter) to guide the simulations?

A D b 4 A b

- All known Monte Carlo methods suffer critical or *exponential* slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...
- Can we use external information (e.g. order parameter) to guide the simulations?
- We present here Tethered Monte Carlo, a general method to reconstruct the effective potential for the order parameter.

4 D b 4 A b

- All known Monte Carlo methods suffer critical or *exponential* slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...
- Can we use external information (e.g. order parameter) to guide the simulations?
- We present here Tethered Monte Carlo, a general method to reconstruct the effective potential for the order parameter.
- Even if we do *not* work in the canonical ensemble, canonical expectation values are recovered with high accuracy.

A B F A B F

Main features

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
 - Related with Creutz microcanonical demon. Main differences:

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
 - Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.

Main features

- Micromagnetic ensemble: fixed β and order parameter (*m*).
- Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
- Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to m rather than to energy.
 - Extensive number of demons.

Main features

- Micromagnetic ensemble: fixed β and order parameter (*m*).
- Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
- Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: m̂ is conserved globally, but not locally→ Local algorithm without critical slowing down (for functions of m).

Main features

- Micromagnetic ensemble: fixed β and order parameter (*m*).
- Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
- Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: m̂ is conserved globally, but not locally→ Local algorithm without critical slowing down (for functions of m).
- Independent simulations at fixed \hat{m} . Later, reconstruction of *canonical* effective potential Ω_N .

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
 - Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: m̂ is conserved globally, but not locally → Local algorithm without critical slowing down (for functions of m).
- Independent simulations at fixed m̂. Later, reconstruction of *canonical* effective potential Ω_N.
- Local algorithm (e.g. Metropolis) straightforward.

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
 - Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: m̂ is conserved globally, but not locally → Local algorithm without critical slowing down (for functions of m).
- Independent simulations at fixed m̂. Later, reconstruction of *canonical* effective potential Ω_N.
- Local algorithm (e.g. Metropolis) straightforward.
- Method demonstrated in the two dimensional Ising model.

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
 - Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: *m̂* is conserved globally, but not locally → Local algorithm *without critical slowing down* (for functions of *m*).
- Independent simulations at fixed m̂. Later, reconstruction of *canonical* effective potential Ω_N.
- Local algorithm (e.g. Metropolis) straightforward.
- Method demonstrated in the two dimensional Ising model.
- Currently implementing cluster methods: improved estimators promising.

Notations: D = 2 Ising model

• Exact results available even for *finite* lattices.

Partition function and main observables:

$$Z = \sum_{\{\sigma_{\mathbf{x}}\}} e^{\beta \sum_{\langle \mathbf{x}, \mathbf{y} \rangle} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} + h \sum_{\mathbf{x}} \sigma_{\mathbf{x}}}, \qquad \sigma_{\mathbf{x}} = \pm 1,$$
$$U = Nu = -\sum_{\langle \mathbf{x}, \mathbf{y} \rangle} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}}, \qquad M = Nm = \sum_{\mathbf{x}} \sigma_{\mathbf{x}}.$$

• Second order phase transition at $\beta_c = 0.440686...$

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i / N\right)$$

- B

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_{\mathbf{x}}\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i / N\right)$$

• Extend configuration space with N decoupled Gaussian demons

$$Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_i \sum_{\{\sigma_{\mathbf{x}}\}} \exp\left[-\beta U - \sum_i \eta_i^2/2\right], \qquad R = Nr = \sum_i \eta_i^2/2.$$

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_{\mathbf{x}}\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i / N\right)$$

• Extend configuration space with N decoupled Gaussian demons

$$Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_i \, \sum_{\{\sigma_{\mathbf{x}}\}} \exp\left[-\beta U - \sum_i \eta_i^2/2\right], \qquad R = Nr = \sum_i \eta_i^2/2.$$

• *r* (almost) Gaussian distributed, $r = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}, |\zeta| \sim 1.$

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i / N\right)$$

• Extend configuration space with N decoupled Gaussian demons

$$Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_i \, \sum_{\{\sigma_{\mathbf{x}}\}} \exp\left[-\beta U - \sum_i \eta_i^2/2\right], \qquad R = Nr = \sum_i \eta_i^2/2.$$

- *r* (almost) Gaussian distributed, $r = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}$, $|\zeta| \sim 1$.
- Let $\hat{m} = m + r$. Its pdf is a convolution (*m* and *r* independent) $\rightarrow p(\hat{m} = m + \frac{1}{2})$ is a *smoothing* of $p_1(m)$.

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i / N\right)$$

• Extend configuration space with N decoupled Gaussian demons

$$Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_i \, \sum_{\{\sigma_{\mathbf{x}}\}} \exp\left[-\beta U - \sum_i \eta_i^2/2\right], \qquad R = Nr = \sum_i \eta_i^2/2.$$

- *r* (almost) Gaussian distributed, $r = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}$, $|\zeta| \sim 1$.
- Let $\hat{m} = m + r$. Its pdf is a convolution (*m* and *r* independent) $\rightarrow p(\hat{m} = m + \frac{1}{2})$ is a *smoothing* of $p_1(m)$.
- A smooth $p(\hat{m})$ has an effective potential $\Omega_N(\hat{m},\beta)$

$$p(\hat{m}) = \frac{1}{Z} \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_{i} \sum_{\{\sigma_{\mathbf{x}}\}} \mathrm{e}^{-\beta U - \sum_{i} \frac{\eta_{i}^{2}}{2}} \delta\left(\hat{m} - m - \sum_{i} \frac{\eta_{i}^{2}}{2N}\right) = \mathrm{e}^{N\Omega_{N}(\hat{m},\beta)}$$

 Integrating demons out in the *constrained* (fixed *m̂*) partition function → tethered expectation values:

$$\langle \boldsymbol{O} \rangle_{\hat{\boldsymbol{m}},\beta} = \frac{\sum_{\{\sigma_{\boldsymbol{x}}\}} \boldsymbol{O}(\hat{\boldsymbol{m}}; \{\sigma_{\boldsymbol{x}}\}) \omega(\beta, \hat{\boldsymbol{m}}, \boldsymbol{N}; \{\sigma_{\boldsymbol{x}}\})}{\sum_{\{\sigma_{\boldsymbol{x}}\}} \omega(\beta, \hat{\boldsymbol{m}}, \boldsymbol{N}; \{\sigma_{\boldsymbol{x}}\})},$$

- H - N

A D M A A A M M

 Integrating demons out in the *constrained* (fixed *m̂*) partition function → tethered expectation values:

$$\langle \boldsymbol{O} \rangle_{\hat{\boldsymbol{m}},\beta} = \frac{\sum_{\{\sigma_{\boldsymbol{x}}\}} \boldsymbol{O}(\hat{\boldsymbol{m}};\{\sigma_{\boldsymbol{x}}\})\omega(\beta,\hat{\boldsymbol{m}},\boldsymbol{N};\{\sigma_{\boldsymbol{x}}\})}{\sum_{\{\sigma_{\boldsymbol{x}}\}} \omega(\beta,\hat{\boldsymbol{m}},\boldsymbol{N};\{\sigma_{\boldsymbol{x}}\})}, \\ \omega(\beta,\hat{\boldsymbol{m}},\boldsymbol{N};\{\sigma_{\boldsymbol{x}}\}) = \mathbf{e}^{-\beta U + M - N\hat{\boldsymbol{m}}}(\hat{\boldsymbol{m}} - \boldsymbol{m})^{(N-2)/2} \theta(\hat{\boldsymbol{m}} - \boldsymbol{m}).$$

- B

A D M A A A M M

 Integrating demons out in the *constrained* (fixed *m̂*) partition function → tethered expectation values:

$$\langle O \rangle_{\hat{m},\beta} = \frac{\sum_{\{\sigma_{\boldsymbol{x}}\}} O(\hat{m}; \{\sigma_{\boldsymbol{x}}\}) \omega(\beta, \hat{m}, N; \{\sigma_{\boldsymbol{x}}\})}{\sum_{\{\sigma_{\boldsymbol{x}}\}} \omega(\beta, \hat{m}, N; \{\sigma_{\boldsymbol{x}}\})}, \\ \omega(\beta, \hat{m}, N; \{\sigma_{\boldsymbol{x}}\}) = \mathbf{e}^{-\beta U + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

• The canonical Ω_N follows from Fluctuation-Dissipation

$$\hat{h}(\hat{m}; \{\sigma_{\boldsymbol{x}}\}) = -1 + \frac{N/2 - 1}{\hat{M} - M} \implies \langle \hat{h} \rangle_{\hat{m},\beta} = \frac{\partial \Omega_{N}(\hat{m},\beta)}{\partial \hat{m}}.$$

 Integrating demons out in the *constrained* (fixed *m̂*) partition function → tethered expectation values:

$$\langle O \rangle_{\hat{m},\beta} = \frac{\sum_{\{\sigma_{\mathbf{x}}\}} O(\hat{m}; \{\sigma_{\mathbf{x}}\}) \omega(\beta, \hat{m}, N; \{\sigma_{\mathbf{x}}\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \omega(\beta, \hat{m}, N; \{\sigma_{\mathbf{x}}\})},$$
$$\psi(\beta, \hat{m}, N; \{\sigma_{\mathbf{x}}\}) = e^{-\beta U + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

• The canonical Ω_N follows from Fluctuation-Dissipation

$$\hat{h}(\hat{m}; \{\sigma_{\boldsymbol{x}}\}) = -1 + \frac{N/2 - 1}{\hat{M} - M} \implies \langle \hat{h} \rangle_{\hat{m},\beta} = \frac{\partial \Omega_N(\hat{m},\beta)}{\partial \hat{m}}.$$

• Tethered mean values $\langle O \rangle_{\hat{m},\beta} \leftrightarrow$ canonical mean values $\langle O \rangle_{\beta}$,

$$\langle O \rangle_{\beta} = \frac{\int d\hat{m} \langle O \rangle_{\hat{m},\beta} \exp[N\Omega_{N}(\hat{m},\beta)]}{\int d\hat{m} \exp[N\Omega_{N}(\hat{m},\beta)]}$$

ω

Steps

() Select a mesh of \hat{m} values.

æ

Steps

- **()** Select a mesh of \hat{m} values.
- 2 Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.

э

Image: A matrix

- **()** Select a mesh of \hat{m} values.
- Independent simulation for each m̂. Get (O)_{m̂,β}.
- $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).

- Select a mesh of *m̂* values.
- Independent simulation for each m̂. Get (O)_{m̂,β}.
- $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- **Output** Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.

- **1** Select a mesh of \hat{m} values.
- Independent simulation for each m̂. Get (O)_{m̂,β}.
- $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- **Output** Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- S Reconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.

- **1** Select a mesh of \hat{m} values.
- Independent simulation for each m̂. Get (O)_{m̂,β}.
- $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- **Output** Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- S Reconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.
- Statistical errors: jackknife.

- **1** Select a mesh of \hat{m} values.
- 2 Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- Sumerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- S Reconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.
- Statistical errors: jackknife.
 - Systematic errors: refine m̂ mesh.

Steps

- **1** Select a mesh of \hat{m} values.
- 2 Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- 3 Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- Seconstruct canonical (O)_β from p(m̂) and (O)_{m,β}.
- Statistical errors: jackknife.
 - Systematic errors: refine m̂ mesh.

< 口 > < 同

Steps

- **1** Select a mesh of \hat{m} values.
- 2 Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- 3 Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- Seconstruct canonical (O)_β from p(m̂) and (O)_{m,β}.
- Statistical errors: jackknife.
- Systematic errors: refine *m̂* mesh.

Autocorrelation times

- *τ*_{int}: dramatic dependence on observable, and on *m̂*.
- Functions of *m* (e.g. *ĥ*): no measurable critical slowing down.
- Energy or propagator's Fourier transform $(\vec{k} \neq 0)$ $\tau_{int}(\hat{m} = 0.5) \approx L^2$ Worst case: $m \sim 0$ or $\hat{m} = \frac{1}{2}$.

Results at the critical point

Parameters

- 51 points in \hat{m} mesh for $L \leq 256$.
- 77 points in \hat{m} mesh for $L \ge 512$.
- 10^7 Metropolis sweeps per \hat{m} .
- Comparison with Ferdinand and Fisher's exat results for finite *L*.

Image: A matrix

L	Energy		Specific heat	
	ТМС	Exact	ТМС	Exact
32	-1.433 69(4)	-1.433 659	9.509(3)	9.5094
64	-1.42397(4)	-1.423 938	11.285(6)	11.288 1
128	-1.41905(5)	-1.419076	13.063(10)	13.060 1
256	-1.41663(5)	-1.416645	14.83(2)	14.829
512	-1.41542(4)	-1.415 429	16.57(3)	16.595
1024	-1.414 89(5)	-1.414 821	18.28(8)	18.361

3 × 4 3

Results in an external field: magnetization m(h)

No new simulations needed to obtain results in a field

• Just shift $\Omega_N(\hat{m},\beta) \to \Omega_N(\hat{m},\beta) - \hat{m}h$, and normalize $p(\hat{m},\beta,h)$.

V. Martin-Mayor (UCM)

CompPhys08, Leipzig 10 / 12

•
$$p(\hat{m}, \beta_{\mathrm{c}}, L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m} - \frac{1}{2})\right)$$

V. Martin-Mayor (UCM)

Tethered Monte Carlo

CompPhys08, Leipzig 11 / 12

•
$$p(\hat{m}, \beta_{\rm c}, L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m} - \frac{1}{2})\right)$$

•
$$p(\hat{m})$$
 has two peaks at $m^{\pm} + \frac{1}{2}$:
 $m^{\pm} \propto L^{-\frac{\beta}{\nu}}, \eta = 2 - D + \frac{2\beta}{\nu}$

•
$$p(\hat{m}, \beta_{\mathrm{c}}, L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m} - \frac{1}{2})\right)$$

•
$$p(\hat{m})$$
 has two peaks at $m^{\pm} + \frac{1}{2}$:
 $m^{\pm} \propto L^{-\frac{\beta}{\nu}}, \eta = 2 - D + \frac{2\beta}{\nu}$

• Finding maxima numerically ill conditioned. Finding roots is OK: $0 = \langle \hat{h} \rangle_{\frac{1}{2} + m^{\pm}, \beta_{c}}$

•
$$p(\hat{m}, \beta_{\mathrm{c}}, L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m} - \frac{1}{2})\right)$$

•
$$p(\hat{m})$$
 has two peaks at $m^{\pm} + \frac{1}{2}$:
 $m^{\pm} \propto L^{-\frac{\beta}{\nu}}, \eta = 2 - D + \frac{2\beta}{\nu}$

Finding maxima numerically ill conditioned. Finding roots is OK: $0=\langle \hat{h}
angle_{rac{1}{2}+m^{\pm},eta_{ ext{c}}}$ (byproduct, simulation not optimized to this aim)

$m^{\pm} = L^{-}$	$\frac{1}{8}[A + BL^{-rac{7}{4}}], \ \chi^2/dof = 0$	$.98/4^{(-)}, 2.85/4^{(+)}$
L	$-m_{\rm peak}^{-}$	$m_{\rm peak}^+$
32	0.764 01(10)	0.764 31(11)
64	0.70286(18)	0.703 0(2)
128	0.6453(3)	0.6451(4)
256	0.5921(7)	0.591 0(7)
512	0.541 9(12)	0.5427(9)
1024	0.499(2)	0.500(2)

V. Martin-Mayor (UCM)

 We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.

э

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).

ヘロン 人間と 人間と 人間と

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).
- Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).
- Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase.
- Observables that depend only on the order parameter, for instance ĥ, do not suffer critical slowing down (m̂ is conserved only globally).

ヘロン 人間と 人間と 人間と

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).
- Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase.
- Observables that depend only on the order parameter, for instance h, do not suffer critical slowing down (m̂ is conserved only globally).
- New opportunities: to compute anomalous dimension, just solve $0 = \langle h \rangle_{\hat{m},\beta_c}$. No need to simulate the full \hat{m} range.

ヘロン 人間 とくほ とくほう

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).
- Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase.
- Observables that depend only on the order parameter, for instance h, do not suffer critical slowing down (m̂ is conserved only globally).
- New opportunities: to compute anomalous dimension, just solve $0 = \langle h \rangle_{\hat{m},\beta_c}$. No need to simulate the full \hat{m} range.
- Promising when suffering from large tunneling barriers associated to the order parameter: Random Field Ising Model, Diluted antiferromagnets on a field, Condensation transition,...

ヘロト 人間 とくほ とくほう