Tethered Monte Carlo: computing the effective potential without critical slowing down

Victor Martin-Mayor

Departamento de Física Teórica I
UNIVERSIDAD COMPLUTENSE DE MADRID

In collaboration with:
L.A. Fernández and David Yllanes
Nuclear Physics B 807, 424-454 (2009)
arXiv:0806.0543
Aims

- All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding, …
Aims

- All known Monte Carlo methods suffer critical or *exponential* slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,…

- Can we use external information (e.g. order parameter) to guide the simulations?
Aims

- All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,…
- Can we use external information (e.g. order parameter) to guide the simulations?
- We present here Tethered Monte Carlo, a general method to reconstruct the effective potential for the order parameter.
All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,\ldots

Can we use external information (e.g. order parameter) to guide the simulations?

We present here Tethered Monte Carlo, a general method to reconstruct the effective potential for the order parameter.

Even if we do not work in the canonical ensemble, canonical expectation values are recovered with high accuracy.
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:

- Related with Creutz microcanonical demon.
 - Continuous demons, coupled to \(m \) rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: \(\hat{m} \) is conserved globally, but not locally → Local algorithm without critical slowing down (for functions of \(m \)).

- Independent simulations at fixed \(\hat{m} \). Later, reconstruction of canonical effective potential \(\Omega_N \).

- Local algorithm (e.g. Metropolis) straightforward.

- Method demonstrated in the two dimensional Ising model.

- Currently implementing cluster methods: improved estimators promising.
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:
 - Micromagnetic ensemble: fixed β and order parameter (m).
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:
 - Micromagnetic ensemble: fixed β and order parameter (m).
 - Tethered ensemble: fixed β and $\hat{m} = m + \text{[Gaussian bath]}$.

Related with Creutz microcanonical demon. Main differences:

- Continuous demons, coupled to m rather than to energy.
- Extensive number of demons.
- Demons integrated-out: \hat{m} is conserved globally, but not locally \rightarrow Local algorithm without critical slowing down (for functions of m).

Independent simulations at fixed \hat{m}. Later, reconstruction of canonical effective potential Ω_N.

Local algorithm (e.g., Metropolis) straightforward.

Method demonstrated in the two-dimensional Ising model. Currently implementing cluster methods: improved estimators promising.
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:
 - Micromagnetic ensemble: fixed β and order parameter (m).
 - Tethered ensemble: fixed β and $\hat{m} = m + \text{[Gaussian bath]}$.
 - Related with *Creutz microcanonical demon*. Main differences:

 - Continuous demons, coupled to m rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: \hat{m} is conserved globally, but not locally \rightarrow Local algorithm without critical slowing down (for functions of m).
 - Independent simulations at fixed \hat{m}. Later, reconstruction of canonical effective potential Ω_N.
 - Local algorithm (e.g. Metropolis) straightforward.
 - Method demonstrated in the two dimensional Ising model. Currently implementing cluster methods: improved estimators promising.
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:
 - Micromagnetic ensemble: fixed β and order parameter (m).
 - Tethered ensemble: fixed β and $\hat{m} = m + \text{[Gaussian bath]}$.
 - Related with *Creutz microcanonical demon*. Main differences:
 - Continuous demons, coupled to m rather than to energy.
Main features

Tethered Ensemble: original d.o.f. + Gaussian magnetostat:

- Micromagnetic ensemble: fixed β and order parameter (m).
- Tethered ensemble: fixed β and $\hat{m} = m + \text{[Gaussian bath]}$.
- Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to m rather than to energy.
 - Extensive number of demons.
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:
 - Micromagnetic ensemble: fixed β and order parameter (m).
 - Tethered ensemble: fixed β and $\hat{m} = m + \text{[Gaussian bath]}$.
 - Related with *Creutz microcanonical demon*. Main differences:
 - Continuous demons, coupled to m rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: \hat{m} is conserved *globally*, but not locally →
 Local algorithm *without critical slowing down* (for functions of m).
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:
 - Micromagnetic ensemble: fixed β and order parameter (m).
 - Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian\ bath]$.
 - Related with Creutz *microcanonical demon*. Main differences:
 - **Continuous** demons, coupled to m rather than to energy.
 - **Extensive** number of demons.
 - Demons integrated-out: \hat{m} is conserved **globally**, but not **locally**.
 Local algorithm **without critical slowing down** (for functions of m).

- Independent simulations at fixed \hat{m}. Later, reconstruction of *canonical* effective potential Ω_N.
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (m).
 - Tethered ensemble: fixed β and $\hat{m} = m + [\text{Gaussian bath}]$.
 - Related with Creutz microcanonical demon. Main differences:
 - Continuous demons, coupled to m rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: \hat{m} is conserved globally, but not locally → Local algorithm without critical slowing down (for functions of m).

- Independent simulations at fixed \hat{m}. Later, reconstruction of canonical effective potential Ω_N.
- Local algorithm (e.g. Metropolis) straightforward.
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:
 - Micromagnetic ensemble: fixed β and order parameter (m).
 - Tethered ensemble: fixed β and $\hat{m} = m + [\text{Gaussian bath}]$.
 - Related with *Creutz microcanonical demon*. Main differences:
 - Continuous demons, coupled to m rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: \hat{m} is conserved *globally*, but not *locally*.

 Local algorithm *without critical slowing down* (for functions of m).

- Independent simulations at fixed \hat{m}. Later, reconstruction of *canonical* effective potential Ω_N.
- Local algorithm (e.g. Metropolis) straightforward.
- Method demonstrated in the *two dimensional Ising model*.
Main features

- **Tethered Ensemble**: original d.o.f. + Gaussian *magnetostat*:
 - Micromagnetic ensemble: fixed β and order parameter (m).
 - Tethered ensemble: fixed β and $\hat{m} = m + \text{[Gaussian bath]}$.
 - Related with *Creutz microcanonical demon*. Main differences:
 - Continuous demons, coupled to m rather than to energy.
 - Extensive number of demons.
 - Demons integrated-out: \hat{m} is conserved globally, but not locally \rightarrow
 Local algorithm *without critical slowing down* (for functions of m).

- Independent simulations at fixed \hat{m}. Later, reconstruction of *canonical* effective potential Ω_N.
- Local algorithm (e.g. Metropolis) straightforward.
- Method demonstrated in the *two dimensional Ising model*.
- Currently implementing *cluster methods*: improved estimators promising.
Notations: $D = 2$ Ising model

- **Exact** results available even for *finite* lattices.
- Partition function and main observables:

\[
Z = \sum_{\{\sigma_x\}} e^{\beta \sum_{\langle x,y \rangle} \sigma_x \sigma_y + h \sum_x \sigma_x}, \quad \sigma_x = \pm 1,
\]

\[
U = Nu = - \sum_{\langle x,y \rangle} \sigma_x \sigma_y, \quad M = Nm = \sum_x \sigma_x.
\]

- Second order phase transition at $\beta_c = 0.440686 \ldots$
The Tethered Ensemble (I)

- Canonical pdf for order parameter \((h = 0)\),

\[
p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta U] \delta \left(m - \sum_i \frac{\sigma_i}{N} \right)
\]
The Tethered Ensemble (I)

- Canonical pdf for order parameter \((h = 0)\),
 \[
 p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i / N\right)
 \]

- Extend configuration space with \(N\) decoupled Gaussian demons

\[
Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\eta_i \sum_{\{\sigma_x\}} \exp\left[-\beta U - \sum_i \eta_i^2 / 2\right], \quad R = Nr = \sum_i \eta_i^2 / 2.
\]
The Tethered Ensemble (I)

- Canonical pdf for order parameter \((h = 0)\),

\[p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i/N\right) \]

- Extend configuration space with \(N\) decoupled Gaussian demons

\[Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} \text{d}\eta_i \sum_{\{\sigma_x\}} \exp\left[-\beta U - \sum_i \eta_i^2/2\right], \quad R = Nr = \sum_i \eta_i^2/2. \]

- \(r\) (almost) Gaussian distributed, \(r = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}, \ |\zeta| \sim 1. \)
The Tethered Ensemble (I)

- Canonical pdf for order parameter ($h = 0$),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i/N\right)$$

- Extend configuration space with N decoupled Gaussian demons

$$Z = \int_{-\infty}^{\infty} \prod_i d\eta_i \sum_{\{\sigma_x\}} \exp\left[-\beta U - \sum_i \eta_i^2/2\right], \quad R = Nr = \sum_i \eta_i^2/2.$$

- r (almost) Gaussian distributed, $r = \frac{1}{2} + \frac{\xi}{\sqrt{N}}, |\xi| \sim 1$.

- Let $\hat{m} = m + r$. Its pdf is a convolution (m and r independent) $\rightarrow p(\hat{m} = m + \frac{1}{2})$ is a smoothing of $p_1(m)$.
The Tethered Ensemble (I)

- Canonical pdf for order parameter \((h = 0) \),

\[
p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta U] \delta\left(m - \sum_i \sigma_i/N\right)
\]

- Extend configuration space with \(N \) decoupled Gaussian demons

\[
Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\eta_i \sum_{\{\sigma_x\}} \exp\left[-\beta U - \sum_i \eta_i^2/2\right], \quad R = Nr = \sum_i \eta_i^2/2.
\]

- \(r \) (almost) Gaussian distributed, \(r = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}, |\zeta| \sim 1 \).

- Let \(\hat{m} = m + r \). Its pdf is a convolution \((m \text{ and } r \text{ independent}) \rightarrow \)

\[
p(\hat{m} = m + \frac{1}{2}) \text{ is a smoothing of } p_1(m).
\]

- A smooth \(p(\hat{m}) \) has an effective potential \(\Omega_N(\hat{m}, \beta) \)

\[
p(\hat{m}) = \frac{1}{Z} \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\eta_i \sum_{\{\sigma_x\}} e^{-\beta U - \sum_i \eta_i^2/2} \delta\left(\hat{m} - m - \sum_i \frac{\eta_i^2}{2N}\right) = e^{N\Omega_N(\hat{m}, \beta)}
\]
The tethered ensemble (II)

Integrating demons out in the constrained (fixed \hat{m}) partition function \to tethered expectation values:

$$\langle O \rangle_{\hat{m}, \beta} = \frac{\sum_{\{\sigma_x\}} O(\hat{m}; \{\sigma_x\}) \omega(\beta, \hat{m}, N; \{\sigma_x\})}{\sum_{\{\sigma_x\}} \omega(\beta, \hat{m}, N; \{\sigma_x\})},$$

The canonical Ω_N follows from Fluctuation-Dissipation

$$\hat{h}(\hat{m}; \{\sigma_x\}) = -\frac{1}{N} + \frac{N}{2} - \frac{1}{\hat{M} - \hat{m}} = \Rightarrow \langle \hat{h} \rangle_{\hat{m}, \beta} = \frac{\partial \Omega_N(\hat{m}, \beta)}{\partial \hat{m}}.$$
The tethered ensemble (II)

- Integrating demons out in the \textit{constrained} (fixed \(\hat{m} \)) partition function \(\rightarrow \) tethered expectation values:

\[
\langle O \rangle_{\hat{m}, \beta} = \frac{\sum_{\{\sigma_x\}} O(\hat{m}; \{\sigma_x\}) \omega(\beta, \hat{m}, N; \{\sigma_x\})}{\sum_{\{\sigma_x\}} \omega(\beta, \hat{m}, N; \{\sigma_x\})},
\]

\[
\omega(\beta, \hat{m}, N; \{\sigma_x\}) = e^{-\beta U + M - N \hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).
\]
The tethered ensemble (II)

- Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

\[
\langle O \rangle_{\hat{m}, \beta} = \frac{\sum_{\{\sigma_x\}} O(\hat{m}; \{\sigma_x\}) \omega(\beta, \hat{m}, N; \{\sigma_x\})}{\sum_{\{\sigma_x\}} \omega(\beta, \hat{m}, N; \{\sigma_x\})},
\]

\[
\omega(\beta, \hat{m}, N; \{\sigma_x\}) = e^{-\beta U + M - N \hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).
\]

- The *canonical* Ω_N follows from Fluctuation-Dissipation

\[
\hat{h}(\hat{m}; \{\sigma_x\}) = -1 + \frac{N/2 - 1}{\hat{M} - M} \quad \implies \quad \langle \hat{h} \rangle_{\hat{m}, \beta} = \frac{\partial \Omega_N(\hat{m}, \beta)}{\partial \hat{m}}.
\]
Integrating demons out in the constrained (fixed \hat{m}) partition function → tethered expectation values:

$$\langle O \rangle_{\hat{m}, \beta} = \frac{\sum_{\{\sigma_x\}} O(\hat{m}; \{\sigma_x\}) \omega(\beta, \hat{m}, N; \{\sigma_x\})}{\sum_{\{\sigma_x\}} \omega(\beta, \hat{m}, N; \{\sigma_x\})},$$

$$\omega(\beta, \hat{m}, N; \{\sigma_x\}) = e^{-\beta U + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

The canonical Ω_N follows from Fluctuation-Dissipation

$$\hat{h}(\hat{m}; \{\sigma_x\}) = -1 + \frac{N/2 - 1}{\hat{M} - M} \quad \Rightarrow \quad \langle \hat{h} \rangle_{\hat{m}, \beta} = \frac{\partial \Omega_N(\hat{m}, \beta)}{\partial \hat{m}}.$$
Numerical methods

Steps

1. Select a mesh of \(\hat{m} \) values.

\[
\exp[N \Omega_N(\beta, \hat{m})] \quad \text{Lineal scale}
\]

\[
\log \quad \text{Log scale}
\]

- Tethered: \(\langle u \rangle_{m, \beta} = -1.419 \)
- Exact: \(\langle u \rangle_{\beta, c} = -1.419 \)
Numerical methods

Steps

1. Select a mesh of \hat{m} values.
2. Independent simulation for each \hat{m}. Get $\langle O \rangle_{\hat{m}, \beta}$.

Tethered: $\langle u \rangle_{\beta}^{c} = -1.41905$.
Exact: $\langle u \rangle_{\beta}^{c} = -1.419076 \ldots$
Numerical methods

Steps

1. Select a mesh of \hat{m} values.
2. Independent simulation for each \hat{m}. Get $\langle O \rangle_{\hat{m},\beta}$.
3. $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
Numerical methods

Steps

1. Select a mesh of \hat{m} values.

2. Independent simulation for each \hat{m}. Get $\langle O \rangle_{\hat{m}, \beta}$.

3. $\langle O \rangle_{\hat{m}, \beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).

4. Numerical integration of $\langle \hat{h} \rangle_{\hat{m}, \beta}$ yields $\Omega_N(\hat{m}, \beta)$.

V. Martin-Mayor (UCM)
Tethered Monte Carlo
CompPhys08, Leipzig
7 / 12
Numerical methods

Steps

1. Select a mesh of \(\hat{m} \) values.

2. Independent simulation for each \(\hat{m} \). Get \(\langle O \rangle_{\hat{m},\beta} \).

3. \(\langle O \rangle_{\hat{m},\beta} \) smooth functions of \(\hat{m} \) → interpolate (e.g. spline).

4. Numerical integration of \(\langle \hat{h} \rangle_{\hat{m},\beta} \) yields \(\Omega_N(\hat{m},\beta) \).

5. Reconstruct canonical \(\langle O \rangle_\beta \) from \(p(\hat{m}) \) and \(\langle O \rangle_{\hat{m},\beta} \).
Numerical methods

Steps

1. Select a mesh of \hat{m} values.
2. Independent simulation for each \hat{m}. Get $\langle O \rangle_{\hat{m},\beta}$.
3. $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
4. Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
5. Reconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.
Numerical methods

Steps

1. Select a mesh of \hat{m} values.
2. Independent simulation for each \hat{m}. Get $\langle O \rangle_{\hat{m}, \beta}$.
3. $\langle O \rangle_{\hat{m}, \beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
4. Numerical integration of $\langle \hat{h} \rangle_{\hat{m}, \beta}$ yields $\Omega_N(\hat{m}, \beta)$.
5. Reconstruct canonical $\langle O \rangle_\beta$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m}, \beta}$.
7. Systematic errors: refine \hat{m} mesh.
Numerical methods

Steps

1. Select a mesh of \hat{m} values.
2. Independent simulation for each \hat{m}. Get $\langle O \rangle_{\hat{m}, \beta}$.
3. $\langle O \rangle_{\hat{m}, \beta}$ smooth functions of \hat{m} \rightarrow interpolate (e.g. spline).
4. Numerical integration of $\langle \hat{h} \rangle_{\hat{m}, \beta}$ yields $\Omega_N(\hat{m}, \beta)$.
5. Reconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m}, \beta}$.
7. Systematic errors: refine \hat{m} mesh.

Tethered: $\langle u \rangle_{\beta}^{\text{c}} = -1.41905$.

Exact: $\langle u \rangle_{\beta}^{\text{c}} = -1.419076$.

Graphs showing $\exp[N \Omega_N(\beta, \hat{m})]$ in lineal and log scale for $L = 128$. Tethered averages and exact canonical value.
Numerical methods

Steps

1. Select a mesh of \hat{m} values.
2. Independent simulation for each \hat{m}. Get $\langle O \rangle_{\hat{m}, \beta}$.
3. $\langle O \rangle_{\hat{m}, \beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
4. Numerical integration of $\langle \hat{h} \rangle_{\hat{m}, \beta}$ yields $\Omega_N(\hat{m}, \beta)$.
5. Reconstruct canonical $\langle O \rangle_\beta$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m}, \beta}$.
7. Systematic errors: refine \hat{m} mesh.

Tethered: $\langle u \rangle_{\beta_c} = -1.41905(5)$
Exact: $\langle u \rangle_{\beta_c} = -1.419076 \ldots$
Autocorrelation times

- τ_{int}: dramatic dependence on observable, and on \hat{m}.
- Functions of m (e.g. \hat{h}): no measurable critical slowing down.
- Energy or propagator's Fourier transform ($\vec{k} \neq 0$)
 $\tau_{\text{int}}(\hat{m} = 0.5) \approx L^2$
- Worst case: $m \sim 0$ or $\hat{m} = \frac{1}{2}$.
Results at the critical point

- $\exp[N \Omega_N(\beta, \hat{m})]$
- $L = 16$
- $L = 32$
- $L = 64$
- $L = 128$

Parameters
- 51 points in \hat{m} mesh for $L \leq 256$.
- 77 points in \hat{m} mesh for $L \geq 512$.
- 10^7 Metropolis sweeps per \hat{m}.
- Comparison with Ferdinand and Fisher's exact results for finite L.

<table>
<thead>
<tr>
<th>L</th>
<th>Energy</th>
<th>Specific heat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TMC</td>
<td>Exact</td>
</tr>
<tr>
<td>32</td>
<td>-1.43369(4)</td>
<td>-1.433659…</td>
</tr>
<tr>
<td>64</td>
<td>-1.42397(4)</td>
<td>-1.423938…</td>
</tr>
<tr>
<td>128</td>
<td>-1.41905(5)</td>
<td>-1.419076…</td>
</tr>
<tr>
<td>256</td>
<td>-1.41663(5)</td>
<td>-1.416645…</td>
</tr>
<tr>
<td>512</td>
<td>-1.41542(4)</td>
<td>-1.415429…</td>
</tr>
<tr>
<td>1024</td>
<td>-1.41489(5)</td>
<td>-1.414821…</td>
</tr>
</tbody>
</table>

V. Martin-Mayor (UCM)
Tethered Monte Carlo
CompPhys08, Leipzig
Results in an external field: magnetization $m(h)$

- No new simulations needed to obtain results in a field
- Just shift $\Omega_N(\hat{m}, \beta) \rightarrow \Omega_N(\hat{m}, \beta) - \hat{m}h$, and normalize $p(\hat{m}, \beta, h)$.

![Graph showing magnetization $m(\beta)$ vs. field h for different system sizes L.]
A funny way of computing the anomalous dimension

\[p(\hat{m}, \beta_c, L) = \frac{1}{L^\beta} f \left(\frac{\beta}{\nu} (\hat{m} - \frac{1}{2}) \right) \]
A funny way of computing the anomalous dimension

- $p(\hat{m}, \beta_c, L) = L^{\frac{\beta}{\nu}} f \left(L^{\frac{\beta}{\nu}} (\hat{m} - \frac{1}{2}) \right)$

- $p(\hat{m})$ has two peaks at $m^{\pm} + \frac{1}{2}$:

 $m^{\pm} \propto L^{-\frac{\beta}{\nu}}$, $\eta = 2 - D + \frac{2\beta}{\nu}$
A funny way of computing the anomalous dimension

\[p(\hat{m}, \beta_c, L) = L^{\frac{\beta}{\nu}} f \left(L^{\frac{\beta}{\nu}} (\hat{m} - \frac{1}{2}) \right) \]

\[p(\hat{m}) \] has two peaks at \(m^\pm + \frac{1}{2} \):

\[m^\pm \propto L^{-\frac{\beta}{\nu}} \], \(\eta = 2 - D + \frac{2\beta}{\nu} \)

Finding maxima numerically ill conditioned. Finding roots is OK:

\[0 = \langle \hat{h} \rangle^{\frac{1}{2} + m^\pm \beta_c} \]
A funny way of computing the anomalous dimension

\[p(\hat{m}, \beta_c, L) = L^\frac{\beta}{\nu} f \left(L^\frac{\beta}{\nu} (\hat{m} - \frac{1}{2}) \right) \]

\[p(\hat{m}) \] has two peaks at \(m^\pm + \frac{1}{2} \):
\[m^\pm \propto L^{-\frac{\beta}{\nu}}, \eta = 2 - D + \frac{2\beta}{\nu} \]

Finding maxima numerically ill conditioned. Finding roots is OK:
\[0 = \langle \hat{h} \rangle^{\frac{1}{2}} + m^\pm, \beta_c \] (byproduct, simulation not optimized to this aim)

\[m^\pm = L^{-\frac{1}{8}} [A + BL^{-\frac{7}{4}}], \chi^2/\text{dof} = 0.98/4^(-), 2.85/4^+(+) \]

<table>
<thead>
<tr>
<th>(L)</th>
<th>(-m^-_{\text{peak}})</th>
<th>(m^+_{\text{peak}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.764 01(10)</td>
<td>0.764 31(11)</td>
</tr>
<tr>
<td>64</td>
<td>0.702 86(18)</td>
<td>0.703 0(2)</td>
</tr>
<tr>
<td>128</td>
<td>0.645 3(3)</td>
<td>0.645 1(4)</td>
</tr>
<tr>
<td>256</td>
<td>0.592 1(7)</td>
<td>0.591 0(7)</td>
</tr>
<tr>
<td>512</td>
<td>0.541 9(12)</td>
<td>0.542 7(9)</td>
</tr>
<tr>
<td>1024</td>
<td>0.499(2)</td>
<td>0.500(2)</td>
</tr>
</tbody>
</table>
We presented **Tethered Monte Carlo**, a general strategy to compute the *canonical* effective potential.

Observables that depend only on the order parameter, for instance $\hat{\mathbf{h}}$, do not suffer critical slowing down ($\hat{\mathbf{m}}$ is conserved only globally).

New opportunities: to compute anomalous dimension, just solve $0 = \langle \hat{h} \rangle \hat{m}$, β_c. No need to simulate the full \hat{m} range.

Promising when suffering from large tunneling barriers associated to the order parameter: Random Field Ising Model, Diluted antiferromagnets on a field, Condensation transition, . . .
We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential. Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).

Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase. Observables that depend only on the order parameter, for instance \hat{h}, do not suffer critical slowing down (\hat{m} is conserved only globally).

New opportunities: to compute anomalous dimension, just solve $0 = \langle h \rangle \hat{m}$, β_c. No need to simulate the full \hat{m} range.

Promising when suffering from large tunneling barriers associated to the order parameter: Random Field Ising Model, Diluted antiferromagnets on a field, Condensation transition, ...
We presented **Tethered Monte Carlo**, a general strategy to compute the **canonical** effective potential.

Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).

 Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase.

Observables that depend only on the order parameter, for instance \hat{h}, do not suffer critical slowing down (\hat{m} is conserved only globally).

New opportunities: to compute anomalous dimension, just solve $0 = \langle h \rangle \hat{m} \beta_c$. No need to simulate the full \hat{m} range.

Promising when suffering from large tunneling barriers associated to the order parameter: Random Field Ising Model, Diluted antiferromagnets on a field, Condensation transition, . . .
We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential. Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).

Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase. Observables that depend only on the order parameter, for instance \hat{h}, do not suffer critical slowing down (\hat{m} is conserved only globally).
Conclusions and Outlook

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).
- Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase.
- Observables that depend only on the order parameter, for instance \hat{h}, do not suffer critical slowing down (\hat{m} is conserved only globally).
- New opportunities: to compute anomalous dimension, just solve $0 = \langle h \rangle_{\hat{m}, \beta_c}$. No need to simulate the full \hat{m} range.
Conclusions and Outlook

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Metropolis simulation straightforward and no more costly than a canonical simulation (look-up-table).
- Particularly efficient in the presence of a magnetic field, or in the broken symmetry, low temperature phase.
- Observables that depend only on the order parameter, for instance \hat{h}, do not suffer critical slowing down (\hat{m} is conserved only globally).
- New opportunities: to compute anomalous dimension, just solve $0 = \langle h \rangle_{\hat{m}, \beta_c}$. No need to simulate the full \hat{m} range.
- Promising when suffering from large tunneling barriers associated to the order parameter: Random Field Ising Model, Diluted antiferromagnets on a field, Condensation transition,...