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slowing down when applied to important problems:

Gauge theories, structural glasses, spin glasses, protein folding,. ..

@ Can we use external information (e.g. order parameter) to guide
the simulations?

@ We present here Tethered Monte Carlo, a general method to
reconstruct the effective potential for the order parameter.

@ Even if we do not work in the canonical ensemble, canonical
expectation values are recovered with high accuracy.
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Introduction (II)

@ Tethered Ensemble: original d.o.f. + Gaussian magnetostat:

e Micromagnetic ensembile: fixed 5 and order parameter (m).
o Tethered ensemble: fixed 3 and m = m + [Gaussian bath].
o Related with Creutz microcanonical demon. Main differences:

@ Continuous demons, coupled to m rather than to energy.
@ Extensive number of demons.
@ Demons integrated-out: M is conserved globally, but not locally—
Local algorithm without critical slowing down (for functions of m).
@ Independent simulations at fixed m. Later, reconstruction of
canonical effective potential 2.
@ Local algorithm (e.g. Metropolis) straightforward.
@ Method demonstrated in the two dimensional Ising model.
@ Currently implementing cluster methods: improved estimators
promising.
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Notations: D = 2 Ising model

@ Exact results available even for finite lattices.
@ Partition function and main observables:

7 — Z ef 2Xx,y) oxoyth3 oy ox ox = £1,
{ox}
U:NU:—ZUXO'_V, M:Nm:ZJx.
(x.y) x

@ Second order phase transition at 5. = 0.440686. . ..
E ;

B> e p=p
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The Tethered Ensemble (I)

@ Canonical pdf for order parameter (h = 0),

p1(m) = Zexp[ ﬁU]CS( ZU:‘/N>

{Ux}
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The Tethered Ensemble (I)
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The Tethered Ensemble (I)

@ Canonical pdf for order parameter (h = 0),

p1(m) = Zexp[ ﬁU]CS( ZUI/N>

{Ux} i
@ Extend configuration space with N decoupled Gaussian demons

Z= / Hdn, Zexp[ pU- Zn?/2] R=Nr=> n?/2
i=1 {ox} i
e r (almost) Gaussian distributed, r = } + W’ I¢] ~ 1

@ Let m = m+ r. Its pdf is a convolution (m and r independent) —
p(im = m+ }) is a smoothing of ps(m).
@ A smooth p(m) has an effective potential 2x(m, 3)

p(f) = Z/ Hdnlg}e BU- 2,25<m m_ Z ) SN (,5)
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The tethered ensemble (lI)

@ Integrating demons out in the constrained (fixed m) partition
function — tethered expectation values:

2oy Ol {oxHw(B, M, N; {ox})
B Z{o‘x} w(/@7 ﬁ?, N; {UX}) 7
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The tethered ensemble (lI)

@ Integrating demons out in the constrained (fixed m) partition
function — tethered expectation values:

o Ston Ol {ox})o(B. . N: {o4})
Ol = =5 BN (o))

w(/Ba ma N1 {OX}) = e_BU+M_Nm(ﬁ7 - m)(N_2)/2 Q(ﬁ’) - m)

@ The canonical {2 follows from Fluctuation-Dissipation

- B N/2 -1 s _ 09n(m.P)
i fox}) = =1+ 2 = {Pms=—5~

@ Tethered mean values (O)y, 5 < canonical mean values (O)g,

(), — 1 8M(Olins XpINu(rn. 3]
0T T dmexpIN2n (i, B)]
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Numerical methods

@ Select a mesh of m values.
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Numerical methods

@ Select a mesh of m values.

Exact canonical value for L =128 —

@ Independent simulation for . Tethered averages for =128 =
each M. Get (O) s 5. £

Q (O)s 5 smooth functions of M 147

— interpolate (e.g. spline). 5 10 ,
© Numerical integration of ?Oj: / Lineal scale .
(h) @, yields 2n(m, ). %iz_m |/ \\f 1
© Reconstruct canonical (O)s L T
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Numerical methods

@ Select a mesh of M values. s
’ Exact canonical value for L =128 —
@ Independent simulation for . Tethered averages for L =128 o
each M. Get (O)s 5. g \\
Q (O)s 5 smooth functions of M L4 F
— interpolate (e.g. spline). 5 100f
< 90 2
© Numerical integration of gl / Lineal scale < \
(M), yields 2n(m, B). Fowll | N FARURIE
© Reconstruct canonical (O) g 05 0 03 s
from p(m) and (O) 4 5.
@ Statistical errors: jackknife. Tethered: (u)5, = —1.41905(5)
@ Systematic errors: refine m Exact:  (u)s, = —1.419076... J
mesh.

y

V. Martin-Mayor (UCM) Tethered Monte Carlo CompPhys08, Leipzig 7/12



Autocorrelation times

@ 7ht: dramatic dependence on
V- observable, and on M.

@ Functions of m (e.g. h):
no measurable critical
slowing down.

@ Energy or propagator’s
Fourier transform (k # 0)
Tint(M = 0.5) ~ L2
Worst case: m~ 0 or m =

WD N U=
BN

il ninin]
[T
ORI 01

—

02 0 02 04 06 08 1 12
m

1
5 -

4
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Results at the critical point

2.5

2 L

)]

&

exp[N Qy (B,

0.5

0

L=16 —
L=32 —
L-g2 BN Parameters
L=128 —=— [} o
/ % @ 51 points in m mesh for L < 256.
| // \ @ 77 points in M mesh for L > 512.
4 |
\ /’ | @ 107 Metropolis sweeps per .
o | @ Comparison with Ferdinand and
‘ : . Fisher’s exat results for finite L.
-0.5 0 0.5 1 L5
L Energy Specific heat
TMC Exact TMC Exact
32 | -1.43369(4) | -1.433659... | 9.509(3) | 9.5094...
64 | -1.42397(4) | -1.423938... | 11.285(6) | 11.2881...
128 | -1.41905(5) | -1.419076... | 13.063(10) | 13.0601...
256 | -1.41663(5) | -1.416645... | 14.83(2) 14.829. ..
512 | -1.41542(4) | -1.415429... | 16.57(3) 16.595. ..
1024 | -1.41489(5) | -1.414821... | 18.28(8) 18.361. ..

1.5+

1t
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Results in an external field: magnetization m(h)

@ No new simulations needed to obtain results in a field
@ Just shift 2n(Mm, 8) — 2n(M, B) — Mh, and normalize p(m, 3, h).

mg (h)

—a

—e—i

107 10'4h10‘3 102 10!
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A funny way of computing the anomalous dimension

2.5 A B B, A 1
T ® p(fn, e, L) = LEF (L¥ (- }))
> L=64
= L=128 —=—
£
2 15
z
o]
E
2
5
0.5
0
-0.5 0 0.5 1 1.5
w
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A funny way of computing the anomalous dimension

. A B A
N ® pln,f L) = LEF (L5 (i~ 1))
2 L=64 ——
3 L=128 —— ~ + 1.
S s @ p(m) has two peaks at m2ﬂ+§
+
g | ox L~ u,n—2 D+ =>
¢ 0.5
0
-0.5 0 0.5 1 1.5
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A funny way of computing the anomalous dimension

” I — @ p(m,p., L) = Lgf( (m—3) )
2 L=64 ——
£ e @ p(/m) has two peaks at m* + 1:
< s p(m) has two p +3t
gz ) T o L™ u,n—2 D—i—zf
§ 05 @ Finding maxima numerically ill
conditioned. Finding roots is OK:
90.5 0 0.5 1 15 0= <h>%+mi,ﬁc
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A funny way of computing the anomalous dimension

exp[N Qy (B,m)]

=16 —
[=32 ——

2 L=
gl e— )
| i

AN /

i il

05t/ /| \\ /) f
/

0

05 0 0.5 1

m* = L~s[A + BL~%], x2/dof = 0.98/4(-), 2.85/4(+)

® p(f, B, L) = L7 £ (L2 (1~ )

@ p(/) has two peaks at m* + 1:
miocL_%,n=2—D+275

@ Finding maxima numerically ill
conditioned. Finding roots is OK:

15 0= <h>%+mi,ﬁc (byproduct, simulation
not optimized to this aim)

N—

L _mpeak m:).eak
32 0.76401(10) 0.76431(11)
64 0.70286(18) 0.7030(2)
128 0.6453(3) 0.6451(4)
256 0.5921(7) 0.5910(7)
512 0.5419(12) 0.5427(9)
1024 0.499(2) 0.500(2)

v
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Conclusions and Outlook

@ We presented Tethered Monte Carlo,
a general strategy to compute the canonical effective potential.

@ Metropolis simulation straightforward and no more costly than a
canonical simulation (look-up-table).

@ Particularly efficient in the presence of a magnetic field, or in the
broken symmetry, low temperature phase.

@ Observables that depend only on the order parameter, for
instance h, do not suffer critical slowing down
(mis conserved only globally).

@ New opportunities: to compute anomalous dimension, just solve
0 = (h) .- No need to simulate the full /n range.

@ Promising when suffering from large tunneling barriers associated
to the order parameter: Random Field Ising Model, Diluted
antiferromagnets on a field, Condensation transition,. . .
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