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Introduction (I)

Aims
All known Monte Carlo methods suffer critical or exponential
slowing down when applied to important problems:
Gauge theories, structural glasses, spin glasses, protein folding,. . .

Can we use external information (e.g. order parameter) to guide
the simulations?
We present here Tethered Monte Carlo, a general method to
reconstruct the effective potential for the order parameter.
Even if we do not work in the canonical ensemble, canonical
expectation values are recovered with high accuracy.
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Introduction (II)

Main features
Tethered Ensemble: original d.o.f. + Gaussian magnetostat:

Micromagnetic ensemble: fixed β and order parameter (m).
Tethered ensemble: fixed β and m̂ = m + [Gaussian bath].
Related with Creutz microcanonical demon. Main differences:

Continuous demons, coupled to m rather than to energy.
Extensive number of demons.
Demons integrated-out: m̂ is conserved globally, but not locally−→
Local algorithm without critical slowing down (for functions of m).

Independent simulations at fixed m̂. Later, reconstruction of
canonical effective potential ΩN .
Local algorithm (e.g. Metropolis) straightforward.
Method demonstrated in the two dimensional Ising model.
Currently implementing cluster methods: improved estimators
promising.
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Notations: D = 2 Ising model

Exact results available even for finite lattices.
Partition function and main observables:

Z =
∑
{σx}

eβ
P

〈x,y〉 σxσy+h
P

x σx , σx = ±1,

U = Nu = −
∑
〈x ,y〉

σxσy , M = Nm =
∑

x
σx .

Second order phase transition at βc = 0.440 686 . . ..

β À βc β = βc β ¿ βc

V. Martin-Mayor (UCM) Tethered Monte Carlo CompPhys08, Leipzig 4 / 12



The Tethered Ensemble (I)

Canonical pdf for order parameter (h = 0),

p1(m) =
1
Z

∑
{σx}

exp[−βU]δ

(
m −

∑
i

σi/N
)

Extend configuration space with N decoupled Gaussian demons

Z =

∫ ∞

−∞

N∏
i=1

dηi
∑
{σx}

exp
[
−βU−

∑
i

η2
i /2

]
, R = Nr =

∑
i

η2
i /2.

r (almost) Gaussian distributed, r = 1
2 + ζ√

N
, |ζ| ∼ 1.

Let m̂ = m + r . Its pdf is a convolution (m and r independent) →
p(m̂ = m + 1

2) is a smoothing of p1(m).
A smooth p(m̂) has an effective potential ΩN(m̂, β)

p(m̂) =
1
Z

∫ ∞

−∞

N∏
i=1

dηi
∑
{σx}

e−βU−
P

i
η2

i
2 δ

(
m̂ −m −

∑
i

η2
i

2N

)
= eNΩN(m̂,β)
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The tethered ensemble (II)

Integrating demons out in the constrained (fixed m̂) partition
function → tethered expectation values:

〈O〉m̂,β =

∑
{σx} O(m̂; {σx})ω(β, m̂, N; {σx})∑

{σx} ω(β, m̂, N; {σx})
,

ω(β, m̂, N; {σx}) = e−βU+M−Nm̂(m̂ −m)(N−2)/2 θ(m̂ −m).

The canonical ΩN follows from Fluctuation-Dissipation

ĥ(m̂; {σx}) = −1 +
N/2− 1
M̂ −M

=⇒ 〈ĥ〉m̂,β =
∂ΩN(m̂, β)

∂m̂
.

Tethered mean values 〈O〉m̂,β ↔ canonical mean values 〈O〉β,

〈O〉β =

∫
dm̂〈O〉m̂,β exp[NΩN(m̂, β)]∫

dm̂ exp[NΩN(m̂, β)]
.
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Numerical methods

Steps

1 Select a mesh of m̂ values.

2 Independent simulation for
each m̂. Get 〈O〉m̂,β .

3 〈O〉m̂,β smooth functions of m̂
→ interpolate (e.g. spline).

4 Numerical integration of
〈ĥ〉m̂,β yields ΩN(m̂, β).

5 Reconstruct canonical 〈O〉β
from p(m̂) and 〈O〉m̂,β .

6 Statistical errors: jackknife.

7 Systematic errors: refine m̂
mesh.

10
-60

10
-40

10
-20

10
0

-0.5  0  0.5  1  1.5
 0

 1

 2

e
x
p

[N
 Ω

N
(β

,m̂
)]

 m̂

Lineal scale
Log scale

 1.4

 1.6

 1.8

–
〈
u
〉
m̂

,β

Tethered averages for L = 128
Exact canonical value for L = 128

Tethered: 〈u〉βc = −1.419 05(5)
Exact: 〈u〉βc = −1.419 076 . . .
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〈ĥ〉m̂,β yields ΩN(m̂, β).

5 Reconstruct canonical 〈O〉β
from p(m̂) and 〈O〉m̂,β .

6 Statistical errors: jackknife.

7 Systematic errors: refine m̂
mesh.

10
-60

10
-40

10
-20

10
0

-0.5  0  0.5  1  1.5
 0

 1

 2

e
x
p

[N
 Ω

N
(β

,m̂
)]

 m̂

Lineal scale
Log scale

 1.4

 1.6

 1.8

–
〈
u
〉
m̂

,β

Tethered averages for L = 128
Exact canonical value for L = 128

Tethered: 〈u〉βc = −1.419 05(5)
Exact: 〈u〉βc = −1.419 076 . . .

V. Martin-Mayor (UCM) Tethered Monte Carlo CompPhys08, Leipzig 7 / 12



Numerical methods

Steps

1 Select a mesh of m̂ values.

2 Independent simulation for
each m̂. Get 〈O〉m̂,β .

3 〈O〉m̂,β smooth functions of m̂
→ interpolate (e.g. spline).

4 Numerical integration of
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Autocorrelation times
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τint: dramatic dependence on
observable, and on m̂.
Functions of m (e.g. ĥ):
no measurable critical
slowing down.
Energy or propagator’s
Fourier transform (~k 6= 0)
τint(m̂ = 0.5) ≈ L2

Worst case: m ∼ 0 or m̂ = 1
2 .
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Results at the critical point
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Parameters

51 points in m̂ mesh for L ≤ 256.

77 points in m̂ mesh for L ≥ 512.

107 Metropolis sweeps per m̂.

Comparison with Ferdinand and
Fisher’s exat results for finite L.

L Energy Specific heat
TMC Exact TMC Exact

32 -1.433 69(4) -1.433 659. . . 9.509(3) 9.509 4. . .
64 -1.423 97(4) -1.423 938. . . 11.285(6) 11.288 1. . .

128 -1.419 05(5) -1.419 076. . . 13.063(10) 13.060 1. . .
256 -1.416 63(5) -1.416 645. . . 14.83(2) 14.829. . .
512 -1.415 42(4) -1.415 429. . . 16.57(3) 16.595. . .

1024 -1.414 89(5) -1.414 821. . . 18.28(8) 18.361. . .
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Results in an external field: magnetization m(h)

No new simulations needed to obtain results in a field
Just shift ΩN(m̂, β) → ΩN(m̂, β)− m̂h, and normalize p(m̂, β, h).
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A funny way of computing the anomalous dimension
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p(m̂, βc, L) = L
β
ν f

(
L

β
ν (m̂ − 1

2 )
)

p(m̂) has two peaks at m± + 1
2 :

m± ∝ L−
β
ν , η = 2− D + 2β

ν

Finding maxima numerically ill
conditioned. Finding roots is OK:
0 = 〈ĥ〉 1

2 +m±,βc

(byproduct, simulation
not optimized to this aim)

m± = L−
1
8 [A + BL−

7
4 ], χ2/dof = 0.98/4(−), 2.85/4(+)

L −m−
peak m+

peak
32 0.764 01(10) 0.764 31(11)
64 0.702 86(18) 0.703 0(2)

128 0.645 3(3) 0.645 1(4)
256 0.592 1(7) 0.591 0(7)
512 0.541 9(12) 0.542 7(9)

1024 0.499(2) 0.500(2)
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Conclusions and Outlook

We presented Tethered Monte Carlo,
a general strategy to compute the canonical effective potential.

Metropolis simulation straightforward and no more costly than a
canonical simulation (look-up-table).
Particularly efficient in the presence of a magnetic field, or in the
broken symmetry, low temperature phase.
Observables that depend only on the order parameter, for
instance ĥ, do not suffer critical slowing down
(m̂ is conserved only globally).

New opportunities: to compute anomalous dimension, just solve
0 = 〈h〉m̂,βc . No need to simulate the full m̂ range.
Promising when suffering from large tunneling barriers associated
to the order parameter: Random Field Ising Model, Diluted
antiferromagnets on a field, Condensation transition,. . .
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