Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state

Ferenc Iglói (Budapest)

in collaboration with

László Környei (Szeged, Budapest)

Michel Pleimling (Virginia Tech)

Leipzig, 27th November 2008

AGENDA

- Nonequilibrium relaxation
 - ordered $(T_i = 0)$ initial state
 - disordered $(T_i = \infty)$ initial state
 - analogy with static semiinfinite criticality
- Models
 - Ising model
 - Baxter-Wu (BW) model

- Turban model
- Results
 - Relaxation from a critical initial state
 - Relaxation from a 1st-order initial state
- Conclusions

Nonequilibrium relaxation

- prepare the system in an initial state for t < 0
- quench to the critical point (T_c) at t = 0
- let evolve with the dynamical rules at T_c for t > 0
- measure
 - relaxation of the magnetization:

$$m(t) = \langle \boldsymbol{\sigma}(t) \rangle$$

- autocorrelation function:

$$G(t,s) = \langle \sigma(s)\sigma(t) \rangle$$

s: waiting time *t*: observation time **in equilibrium:**

$$G(t,s) \sim (t-s)^{-2x/z}$$

time dependence for t > 0

• ordered initial state $(T_i = 0)$

relaxation involves only equilibrium critical exponents

$$m(t) \sim t^{-x/z}, \quad T_i = 0$$

 $x = \beta/v$: anomalous dimension of the magnetization

z: dynamical exponent

autocorrelation function:

$$G(t,s) \sim (t-s)^{-2x/z}g(t/s), \quad T_i = 0$$

position dependence for y > 0

• magnetization profile in a semiinfinite system $y \ge 0$ with **fixed boundary condition**

$$m(y) \sim y^{-x}, \quad h_s = \infty$$

correlation function:

$$C(y_1, y_2) \sim (y_1 - y_2)^{-2x} g(y_1/y_2), h_s = \infty$$

time dependence for t > 0

• disordered initial state $(T_i = \infty)$

$$m(t) \sim m_i t^{\theta}, \quad t < t_i$$

 θ : initial slip exponent

 $m_i \rightarrow 0$: initial magnetization $t_i \sim m_i^{-z/x_i}$: initial time $r_i = \theta_z + r^2$ anomalous dimen

 $x_i = \theta_z + x$: anomalous dimension of m_i

$$G(t,s) \sim t^{-\lambda/z}, \quad t \gg s, \quad T_i = \infty$$

 $\lambda = d - \theta z = d - x_i + x$

position dependence for y > 0

• magnetization profile in a semiinfinite system with small surface field: $h_s \ll 1$

$$m(y) \sim y^{x_s - x}, \quad y < y_s$$

 $h_s \rightarrow 0$: surface field $y_s \sim h_s^{-1/x_s}$: surface region x_s : anomalous dimension of m_s

$$C(y_1, y_2) \sim y_1^{-\eta_\perp}, \quad y_1 \gg y_2$$

$$\eta_{\perp} = x_s + x$$

.

Power-law correlations in the initial state

previous studies

• 2d XY model: $T_i < T_c < T_{KT}$ (Berthier, Holdsworth, Sellitto) (Abriet, Karevski)

 $x(T_c) \to x(T_c) - x(T_i)$

• spherical model (Picone, Henkel)

Our aim is to study nonequilibrium dynamics after a sudden change of the form of the interaction

Experimental realization: atoms in optical lattices.

Models

• 2d Ising model \rightarrow dynamics at T_c

 $\mathscr{H}_{I} = -\sum_{i,j} J\left(\sigma_{i,j}\sigma_{i,j+1} + \sigma_{i,j}\sigma_{i+1,j}\right)$

critical point: sin

$$\sinh(2J/kT_c)=1$$

• Baxter-Wu model

$$\mathscr{H}_{BW} = -\sum_{i,j} J_{BW} (\sigma_{i,j} \sigma_{i-1,j} \sigma_{i,j-1} + \sigma_{i,j} \sigma_{i+1,j} \sigma_{i,j+1})$$

critical point:

•

$$\sinh(2J_{BW}/kT_c)=1$$

4-state Potts universality

• Turban model

$$\mathcal{H}_n = -\sum_{i,j} \left(J_2 \sigma_{i,j} \sigma_{i,j+1} + J_n \prod_{k=0}^{n-1} \sigma_{i+k,j} \right)$$

critical point:

$$\sinh(2J_2/kT_c)\sinh(2J_n/kT_c)=1$$

- n = 3, 2^{nd} -order 4-state Potts universality

-
$$n = 4$$
, 1st-order

Relaxation from second-order transition points

[L. Környei, M. Pleimling, F. I., Phys. Rev. E77, 011127 (2008)]

BW model

n = 3 Turban model

Relaxation from an n = 3 critical state

11

Relaxation from a first-order transition point

n = 4 Turban model $T < T_c \rightarrow 8$ -fold degenerate state

- latent heat: $\Delta/kT_c = 0.146(3)$
- jump in the magnetization: $m_c = 0.769(6)$

Reminder: nonequilibrium relaxation from $T_i = \infty$

[M. Pleimling, F. I., Europhys. Lett. 79, 56002 (2007)]

Relaxation from $m_i > 0$

$$m_i > m^* = 0.5$$
 $m(t) \rightarrow m_c$
 $m_i < m^* = 0.5$ $m(t) \rightarrow 0$ $m(t) \sim t^{-d/z}$
 $m_i < m^* = 0.5$ $m(t) \rightarrow m_c/2$

Wetting in time

discontinuous equilibrium transition continuous nonequilibrium transition

Autocorrelation of the 2d Ising model starting with n = 4 initial state

14

Conclusions

	x	z	λ/z	θ
Ising	1/8	2.17	0.74(2)	0.187
BW	1/8	2.29(1)	1.13(6)	-0.186(2)
n = 3	1/8	2.3(1)	0.98(2)	-0.03(1)
n=4	$0.^{(a)}$	2.05(10)	$\infty^{(b)}$	-1.00(5)
BW			0.17(1)	0.18(1)
<i>n</i> = 3			0.165(10)	0.18(1)
n=4			0.475(10)	

 $^{(a)}$: discontinuity fixed-point value $^{(b)}$: stretched exponential decay

- a critical initial state has an influence on the nonequilibrium exponents
- initial states in the same universality class have the same effect
- analogy with static critical behavior at an interface separating two critical systems
- if the initial state corresponds to a 1^{st} order transition then $\lambda=d/2$

Acknowledgment

László Környei (Szeged, Budapest)

Michel Pleimling (Virginia Tech)

• 2d random-field Ising model

$$\mathscr{H}_{RF} = \mathscr{H}_{I} - \sum_{i} (H + h_{i,j}) \sigma_{i,j}$$

 $h_{i,j}$ random field with Gaussian distribution:

$$P(h_{i,j}) = \frac{1}{\sqrt{2\pi h^2}} \exp\left[-\frac{h_{i,j}^2}{2h^2}\right]$$

for H = 0:

- no magnetic long-range order
- geometrical clusters (with parallel spins)
 - percolating for $\Delta \,{=}\, J/h < \Delta_c \approx 1.65$

- homogeneous domains of size: $l_b \sim \exp(A/\Delta^2)$: breaking-up length

Relaxation from the RFIM initial state

 $m_i = 0.25, \quad \Delta = 1.7, \quad \text{lattice} : 200 \times 200$

- 1) cluster dissolution $ightarrow \ln t_{min} \sim \ln l_b \sim 1/\Delta^2$
- 2) domain growth $\rightarrow t_i \sim m_i^{-z/x_i}$
- 3) equilibrium relaxation

a) $\Delta = 1.4, 1.5, 1.6, 1.7, 1.8, 2.0, 2.2, 2.6, 3.0$ (from bottom to top)

 $\Delta = 1.4, 1.6, 1.8, 2.0, 4.0$ (from top to bottom), green: $T_i = \infty$

c) $\Delta = 1.4, 1.6, 1.8, 2.0, 2.2, 2.6, 3.0$ (from bottom to top), dashed: $T_i = \infty$

inset: L = 128,200,500 (from bottom to top)

same nonequilibrium exponents as for $T_i = \infty$