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|. Kinetic Ising models

study relaxation of 1D Ising spin systems coupled to a heat bath
classical equilibrium Hamiltonian : H = —J ) op0n41, 05 = £1
consider probability P({c}; t) of configuration {c} = (01,...,0x)
Markovian dynamics, described by a master equation

OP({o}it) = — Z[W(Fncﬂa)P({a}; t)—W(o|Fao)P({Fno}; t)]

n

with single-spin flips {Fro} = (01,...,0n-1, —0ny Ontl,s - ON)
and transition rates W(o — 1) = W(7|o).

experimentally observed, e.g. in single-chain magnets :
[Mn2(saltmen)aNi(pao)2(py)2](ClO4)2 COULON BT AL. 04



Local transition rates, with
(i) parity and (ii) spin-reversal symmetries (for h, = 0) :

W(Fnolo) = a(l — (v/2)on(0n-1+ 0n+1) + 00n—10n+1)
— atanh(Bh,) (on — (7/2) (=1 + Ont1) + 00n—1070n+1)

Detailed balance guarantees relaxation towards equilibrium state
at temperature 571 :

~ = (1+ &) tanh(28.J).

Almost universally chosen :

Glauber dynamics : § =0 integrable in one dimension
GLAUBER '63
here : KDH dynamics : KIMBALL 79, DEKER & HAAKE '79



physical interest : consider transition rates

rates
process Glauber KDH dual process
TIT—11T a(l+7v) o(1+35) AA— 0D
TIT—11T a(l-7) «al-0) 00— AA
M1 a  ofl—6) 0A— A)
1l—110 o o(l—6) AD—0A

here : v = tanh(2/J), 0 = tanh(25J)/(2 — tanh(243J)).

for J > 0 always two stationary states : --- TT17 -+, --- [[l] -~
unique stationary states for 371 >0 <= y< 1,6 < 1

additional absorbing states for KDH dynamics if § = 1
periodic chain with A sites : &~ 2 - 1.618" absorbing states

CARLON, MH, ScHOLLWOCK 01



Questions :
o effect of additional absorbing states on dynamics?
@ value of dynamical exponent z7? DEKER & HAAKE *79, HAAKE & THOL "80
@ consequences for ageing behaviour ? (two-time quantities)

@ relationships with kinetically constained models?

FREDERIKSON & ANDERSEN '84



[I. Calculation of global averages

Find single-time and two-time observables

X)e = ZX {oH)P({a}it)
X(@®)Y(s)) = ZX {e)Y({a})P({o}, tl{a},s)

Consider single-spin and three-spin quantities
On , Qn = 0p-10n0n+1

Single-time averages can be found from (n; # nj if i # j) 1 Guavees 63

N

0

a<0n1 o 'UnN>t =2 <Un1 “Ony Z W(Fni0’0)> )
t

i=1



find explicit equations of motion (for external field h, = 0) :

0

a<gn> = _<Un> + %<0'n—1 + O'n+1> - (5<Qn>

0

a(qn) = —=3(qn) +Y(on-1+ ont1) — (o) + 6 (An)

L Y
where A, = [%Unf20'n0n+1 - O'nflo'n+10'n+2}
Y
+ [%Un,10n0n+2 - O'n720'n710'n+1}
Define gIObaI observables : KIMBALL 79, DEKER & HAAKE ’79

1 1
M(t) := N;<0n>t , T(t) = NXHX%N
find for (KDH) a closed system of equations of motion
d (M) (20-1 —0o M(t) _
(7 )= (%% ) (50 ) v



Solution :  M(t)=M_e t/7 4 M, e t/™

with 771 =2 — 6 + /1 +20 — 262.

1. Dynamical exponent : equilibrium correlation length

€1 = —Intanh(BJ) =~ 2727/ hence 6 ~ 1 — €72 puxen & Hanke 79

For large times & (3 — oo, relaxation time 7_ ~ %{4 = |z=4

distinct from result z = 2 of Glauber dynamics as 5~ — 0
2. non-monotonous behaviour of global magnetisation, in
contrast to Glauber dynamics

—— T(0)= 050 M

0.3

ool e T T T s =

magnetisation M(t) in KDH model (a) 6 = 0.90476 (b) 6 =1
I



Global single-time correlators :

Con(t) = {omon)e 5 CI7a(t) = (qmon)t » Cl(t) := (Gmdn)

and C(t) :=N23"  CaP,(t). We find, for N — oo :

4 [ €T -2 -25 0 Coo(t)
L(E0)-(45a 8) (59)
B\ caar) 0 65 —6 C99(t)

with the explicit solutions (ay := 1460 £ V1 +25 —262) :

Co%(t) = B_e /™ 4 Bye t— '+ 4 B 72t/
CI(t) = %e—ﬂ/n n (]'—I_(;S)Boe—t(T_l-i-T;l) . %e—m'/n_
CH(t) = Pop e 2 4 3Byt ) 4 3t g o2t

Qe+ a_

NB : the B4 o depend on the initial conditions



I1l. Ageing behaviour

a) Define two-time (linear)
magnetic field h(s) :

1 on)t
BN En: dh(s)

such that for t > s, we have

8( R(t,s) > _ ( 26 -1
ot \ Q(t,s) 36

R(t,s) :=

h=0

to an external

5<C7n> t
dh(s)

) v

~ 1
5 Q(t,s) = [37'/\/,2

h=0

-6 R(t,s)
-3 ) ( Q(t,s)

with the boundary conditions for t = s :

?(575) =
Q(s,s) =

1+0C)7(s) — 26C7(s)
54 (1 —28)C3%(s) + 2(1 — 6)C(s)

—26CJ°(s) + 26 CH(s)

NB : the non-global correlators Cﬁb(t) =Ny, c®

m “ntm,m

(t) are not yet known in general



Solution :  R(t,s) = A_(s)e (t=5)/7 1 A (s)e~(t=5)/7+

Quench from fully disordered state (§ =0 or 571 = )

to some finite 6 € (0,1] :

then K(0,0) = 1 and Q(0,0) = 4.

In particular, at zero temperature § = 1, we find ﬁ(t, 0) ~ cste..

Interpretation : space-time response with respect to a fluctuation
in the initial state :  R(t,0;r) = t =/Zfp(|r|?/t)
our results are in Fourier space at zero momentum k =0 :

~ o~

R(t,0) = Ro(t,O):/Rddreik*R(t,o;r)

_ / dr t38/2 fo([e[2 /1) ~ £1d-20)/2
Rd

hence of 1D KDH model :



b) two-time Cob(t,s) = N2% . Cab (t,s)
For t > s, we have the equations of motion

9 [ Cof(ts) \ < 26—1 —6 ) Cof(t,s)

ot \ C9(t,s) | 36 -3 Caf(t,s)
and boundary condition for t = s : Eab(s./ s) = C(s).
For example, the global spin-spin correlator is

Bo[

Cacr(h S) _ B,e_(t+s)/T*—|—7 e—t/T,—s/n__'_e—t/n.—s/T,]_|_B+e—(t+s)/7'+

Quench from ¢ = 0 to criticality 6 = 1 : we find E””(t, s) ~ cste..
Interpretation : result in Fourier space at zero momentum k =0 :
C(t,0) = Co(t,0) = / dr e *7C(¢,0; 1) ~ tld2)/2

Rd
hence of 1D KDH model : Ac=1



V. Conclusions

@ 1D KDH model v = 20 gives closed equations of motion for
global magnetisation > (o,) and three-spin average
Z” Iiﬂ'n 10 n0 n+ 1, KIMBALL '79, DEKER & HAAKE '79
@ at zero temperature many new absorbing states
dual system : reaction(-diffusion) processes

© find closed system of equations of motion for global
single-time and two-time correlators and responses

o exponents:’z:4, /\C:)\Rzl‘

for comparison : Glauber dynamics : z=2, A\¢ = A\gp = 1.

Some open questions :
@ extension to higher dimensions?
@ extension to different spin systems?
@ closed systems of equations for non-vanishing momenta ?



