Ultrametricity and clustering of states in spin glasses A one-dimensional view

A.K. Hartmann

Institute of Physics, University of Oldenburg

with H. Katzgraber (Zürich)

Leipzig, 28. November 2008

1d model with variable dimension

- Ultrametricity
- Hierarchical clustering

1-dimensional long-range spin glass

N Ising spins $S_i = \pm 1$ on a ring tunable long-range interaction

$$\mathcal{H} = -\sum_{i < j} J_{ij} S_i S_j, \ \ J_{ij} = c(\sigma) \frac{\epsilon_{ij}}{r_{ij}^{\sigma}}$$

 ϵ_{ij} quenched Gaussian N(0, 1) $c(\sigma)$ such that $1 \stackrel{!}{=} T_c^{MF}[c(\sigma)]$ [Kotilar/Anderson/Stein, PRB 1983]

Phase diagram:

close to $\sigma=2/3$: $d_{
m eff}pprox 2/(2\sigma-1)$ [Bhatt/Young, JMMM 1986]

Nature of the spin-glass phase

Mean-Field Picture

 $\sigma < 1/2$

Droplet Picture $\sigma > 1$

There are MANY states

There are TWO states

Nature of the spin-glass phase

Mean-Field Picture

 $\sigma < 1/2$

Droplet Picture $\sigma > 1$

There are MANY states

There are TWO states

overlaps: $q_{lphaeta} = rac{1}{N}\sum_i {\sf S}_i^lpha {\sf S}_i^eta$

Ultrametricity

Distance $d_{lphaeta} = 1 - |q_{lphaeta}| o$ respects spin-flip symmetry

Numerics: Parallel Tempering Monte Carlo $T \in [0.4T_c, 1.4T_c]$ [H.G. Katzgraber and AKH, arXiv:0807.3513]

- Start: *Z* configs = *Z* single configuration clusters $C_{\alpha} = \{\underline{S}^{\alpha}\}$ initial distances $\tilde{d}(C_{\alpha}, C_{\beta}) = d_{\alpha\beta}$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $\tilde{d}(C_{\text{new}}, C_{\gamma}) = \dots (\gamma \neq \alpha, \beta)$, until one cluster left.

•	•
•	•

- Start: *Z* configs = *Z* single configuration clusters $C_{\alpha} = \{\underline{S}^{\alpha}\}$ initial distances $\tilde{d}(C_{\alpha}, C_{\beta}) = d_{\alpha\beta}$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $\tilde{d}(C_{\text{new}}, C_{\gamma}) = \dots (\gamma \neq \alpha, \beta)$, until one cluster left.

- Start: *Z* configs = *Z* single configuration clusters $C_{\alpha} = \{\underline{S}^{\alpha}\}$ initial distances $\tilde{d}(C_{\alpha}, C_{\beta}) = d_{\alpha\beta}$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $\tilde{d}(C_{\text{new}}, C_{\gamma}) = \dots (\gamma \neq \alpha, \beta)$, until one cluster left.

- Start: *Z* configs = *Z* single configuration clusters $C_{\alpha} = \{\underline{S}^{\alpha}\}$ initial distances $\tilde{d}(C_{\alpha}, C_{\beta}) = d_{\alpha\beta}$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $\tilde{d}(C_{\text{new}}, C_{\gamma}) = \dots (\gamma \neq \alpha, \beta)$, until one cluster left.

- Start: *Z* configs = *Z* single configuration clusters $C_{\alpha} = \{\underline{S}^{\alpha}\}$ initial distances $\tilde{d}(C_{\alpha}, C_{\beta}) = d_{\alpha\beta}$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $\tilde{d}(C_{\text{new}}, C_{\gamma}) = \dots (\gamma \neq \alpha, \beta)$, until one cluster left.

Sample results

Number of clusters

During clustering at step *i*: M(i) = M - i clusters $\{C_{\gamma}\}$ For each cluster C: $sp_{C} = rac{2}{|C|(|C|-1)} \sum_{lpha
eq eta \in C} d_{lphaeta}$ spread [Kelley/Gardner/Sutcliffe, Prot.Eng.1996] averaged + normalized spread $\overline{sp}_i^{\text{norm}} \in [1, M-2]$ $\frac{1}{SP_i} m^{nom} + M(i)$ 80 60 40 <u>sp</u>in, 20 20 40 80 100 60 M(i)

 $\square P_i := \overline{sp}_i^{\text{norm}} + \gamma M(i) \ (\gamma = \text{``sensitivity''})$

- $\overline{sp}_i^{\text{norm}}$ small, if clusters compact
- M(i) small, if few clusters

 \rightarrow $I_{\min} = \operatorname{argmin}_i \{P_i\}, c = M(i_{\min}) = \text{number of clusters}$

For each system size *N*: For 100 realizations of set of *M* random strings ($T = \infty$): Choose γ such that $\overline{c} = c_0 = 1.1$

Results:

[H.G. Katzgraber and AKH, arXiv:0807.3513]

Result depends on c_0 : peak moves left for decreasing c_0

- 1d long-range model: tunable from mean-field to simple behavior
- Normalize "degree of ultrametricity" by width of distance distribution

 \rightarrow Exhibits ultrametricity close to $\sigma = 1$ (d_{eff} = 2)

Determine clusters via "spread" of configurations \rightarrow Cluster numerically "visible" close to $\sigma = 1$.