Strong coupling QCD as a dimer model

M.Fromm, Ph. de Forcrand ETH, Zürich

arXiv:0811.1931

CompPhys08 Leipzig, Nov. 2008

Strong coupling QCD (SCQCD) under investigation for > 25 years. . .

Analytical (Mean Field $1/d$)	Numerical
 Mass spectrum: Kawamoto and Smit '81, Kluberg-Stern, Morel, Petersson '82 	• Karsch and Mütter '89, MDP-approach ($T \approx$ 0, $\mu \approx \mu_c$)
 Phase diagram, Damgaard, Kawamoto, Shigemoto '84 	• Boyd et al. '92, MDP at $\mathcal{T} pprox \mathcal{T}_{\mathcal{C}}, \mu = 0$
 Phase diagram with 1/g² corrections: Faldt and 	 Azcoiti et al. '99 (MDP under scrutiny)
Petersson '86, Bilić et al.'92 • Latest: Nishida '04, Kawamoto	• de Forcrand and Kim '06, HMC, mass spectrum
et al. '05, Miura and Ohnishi '08 (next talk)	

Some Definitions:

$$Z = Z(m, \mu, \beta) = \int \mathcal{D} U \mathcal{D} \bar{\chi} \mathcal{D} \chi \, \mathrm{e}^{S_{\mathrm{F}} + \beta S_{\mathrm{G}}},$$

 μ chemical potential, *m* staggered quark mass, $\beta = \frac{6}{g_0^2}$ inverse gauge coupling, χ grassmann-valued quark field, links $U_{x,\hat{\nu}} \in SU(3)$

$$\begin{split} S_{\rm G} &= \sum_{P} \left(1 - \frac{1}{3} \operatorname{Re} \operatorname{tr}[U_{P}] \right) \\ S_{\rm F} &= \sum_{x,\nu} \bar{\chi}_{x} \left[\eta_{x,\hat{\nu}} U_{x,\hat{\nu}} \chi_{x+\hat{\nu}} - \eta_{x,\hat{\nu}}^{-1} U_{x-\hat{\nu},\hat{\nu}}^{\dagger} \chi_{x-\hat{\nu}} \right] + 2m \sum_{x} \bar{\chi}_{x} \chi_{x} \end{split}$$

 $\eta_{x,\hat{\nu}} = \mathrm{e}^{\mu} \ (\nu = 0)$ and $(-1)^{\sum_{\rho < \nu} x_{\rho}}$ otherwise.

Strong coupling QCD (SCQCD)

In Strong (infinite) coupling limit $g \to \infty$, $\beta = 0$ - can do integral in links $U_{x,\hat{\nu}}$ first [Rossi & Wolff]:

$$Z(m,\mu) = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi e^{2m\sum_{x}\bar{\chi}_{x}\chi_{x}} \prod_{x,\nu} F_{x,x+\hat{\nu}}$$

where
$$F_{x,x+\hat{\nu}} = \sum_{k=0}^{3} (-1)^k \alpha_k (M_x M_{x+\hat{\nu}})^k + \left[\bar{B}_x B_{x+\hat{\nu}} \eta_{x,\hat{\nu}}^3 - \bar{B}_{x+\hat{\nu}} B_x \eta_{x,\hat{\nu}}^{-3} \right].$$

New degrees of freedom are color singlet

Monomers $M_x = \sum_{a,x} \bar{\chi}_{ax} \chi_{ax}$, (•), monomers per site $n_x = 0, ..., 3$ Dimers $D_{k,xy} = \frac{1}{k!} (M_x M_y)^k$ (-, =, \equiv), bond number $n_b = 0, ..., 3$ (Anti-)Baryons $B_x = \chi_{1x} \chi_{2x} \chi_{3x}$, $\bar{B}_x = \bar{\chi}_{3x} \bar{\chi}_{2x} \bar{\chi}_{1x}$, ---

SCQCD loop gas

Self-avoiding loops C of $\overline{B}B_x$ pairs are formed, with signed weights $\rho(C)$,

$$Z(m,\mu) = \sum_{\{n_x,n_b,\Box\}} \prod_b \frac{(3-n_b)!}{3!n_b!} \prod_x \frac{3!}{n_x!} (2m)^{n_x} \prod_{\text{loops } C} \rho(C) ,$$

constraint $n_x + \sum_{b_x} n_{b_x} = 3.$

• MDP description [Karsch & Mütter, 1989]: Signed baryonic loops are associated with polymer loops. Mapping the weight

> $ho_B(C) \rightarrow w_{polymer}(C)$ $\pm \cosh 3\mu/T \rightarrow 1 \pm \cosh 3\mu/T$

softens the sign problem.

SCQCD loop gas

Self-avoiding loops C of $\overline{B}B_x$ pairs are formed, with signed weights $\rho(C)$,

$$Z(m,\mu) = \sum_{\{n_x,n_b,\Box\}} \prod_b \frac{(3-n_b)!}{3!n_b!} \prod_x \frac{3!}{n_x!} (2m)^{n_x} \prod_{\text{loops } C} \rho(C) ,$$

constraint $n_x + \sum_{b_x} n_{b_x} = 3.$

 MDP description [Karsch & Mütter, 1989]: Signed baryonic loops are associated with polymer loops. Mapping the weight

> $ho_B(C) \rightarrow w_{polymer}(C)$ $\pm \cosh 3\mu/T \rightarrow 1 \pm \cosh 3\mu/T$

softens the sign problem.

Average sign for varying V, μ

• $\langle \operatorname{sign} \rangle = \frac{Z}{Z_+} \sim \exp\left(-Vf(\mu)/T\right)$

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}.$$

 Corresponds to introduction of additional monomers ("worm" head and tail)

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}.$$

- Corresponds to introduction of additional monomers ("worm" head and tail)
- MC-update via heatbath shift of head, sample configs contributing to $\langle M_{bx_1}M_{cx_2}\rangle$

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}$$

- Corresponds to introduction of additional monomers ("worm" head and tail)
- MC-update via heatbath shift of head, sample configs contributing to $\langle M_{bx_1} M_{cx_2} \rangle$
- No restrictions in mass range (e.g. can take m→ 0) in contrast to local monomer changing Metropolis step ↔ ●●

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}.$$

- Corresponds to introduction of additional monomers ("worm" head and tail)
- MC-update via heatbath shift of head, sample configs contributing to $\langle M_{bx_1}M_{cx_2}\rangle$
- No restrictions in mass range (e.g. can take m→ 0) in contrast to local monomer changing Metropolis step ↔ ●●

• See U(N) [Adams & Chandrasekharan '03]

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}.$$

- Corresponds to introduction of additional monomers ("worm" head and tail)
- MC-update via heatbath shift of head, sample configs contributing to $\langle M_{bx_1}M_{cx_2}\rangle$
- No restrictions in mass range (e.g. can take m→ 0) in contrast to local monomer changing Metropolis step ↔ ●●
- See U(N) [Adams & Chandrasekharan '03]

Simple efficiency test

SCQCD chiral restoration transition (1)

Phase diagram as obtained by mean-field calculations [Nishida '04]

 $m = 0: \ U(1)_{\mathcal{A}}: \chi \to \chi \exp(i\epsilon(x)\theta), \ \bar{\chi} \to \bar{\chi} \exp(i\epsilon(x)\theta), \ \epsilon(x) = (-)^{\sum_{\rho} x_{\rho}}$

Consistency check with Karsch & Mütter

- At low T, transition strong 1st order; multicanonical sampling, wang-landau need for ergodic sampling
- Reveals important corrections to $\mu_c(T = 1/4, m = 0.1)$ value

Compare to mean-field results (1)

- \bullet Good agreement as for location of transition for m = 0.1, T = 1/2, 1/4
- $\bullet~Order?~\rightarrow$ Mean-field: m = 0.1, T = 1/2 is still first order
- Or: First order line ends in CEP critical mass for e.g. T = 1/2 ?

Compare to mean-field results (2)

• As quark mass m increases critical μ is shifted and transition becomes smoother

Compare to mean-field results (3)

• FSS for $P(\sigma)$, taking 3d Ising critical exponents

• $m_c(T = 1/2) \approx 0.038$

Compare to mean-field results (4)

• Mean-field $m_c(T = 1/2) = 0.4$ deviates $\mathcal{O}(10)!$

Puzzle

- T = 1/4, m = 0.1 MC supports mean-field: $\mu_c \approx 0.64$ (MC).
- However: Expect (T = 0)-phase transition when

$$3\mu \ge F_B \approx M_{\text{Nucleon}} \approx 3$$
, i.e. $\mu_c \approx 1$

- Nuclear attraction strong, $\mathcal{O}(300\,\mathrm{MeV})$?
- Or: Finite *T* effects (MC) and mean field approach inaccurate ?
 → Check with canonical simulation.

Internal energy vs B

- $E(B=1) \approx M_B \ (T \sim 75 \text{ MeV})$
- $E(B = 2) 2E(B = 1) \approx -0.1$, i.e. "deuteron" binding enhanced from 2 MeV to 30 MeV
- Further binding of one baryon to ca.20 nearest neighbours to give $\mu_{c}\approx 600~{\rm MeV}$

Summary & Outlook

- Sizeable corrections to early MC-study
- Quantitative mean-field results may deviate by $\mathcal{O}(10)$
- "Nuclear" matter

"Assignment"

- Extrapolation $T \rightarrow 0$ remains open,
 - Include asymmetry γ to vary T continuously
 - Compare real and imaginary μ
- SCQCD Phase diagram
 - In the chiral limit: Locate TCP
 - CEP for varying quark mass
 - Flavor dependence of phase diagram