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Potts model

The Potts model is a spin model with

n spins,

the spins i , j are coupled with coupling strength Jij ,

each spin can take q different states σi ∈ {0, 1, . . . , q − 1},

Hamiltonian

H(σ) = −
∑

<i ,j>

Jijδ(σi − σj).
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Reformulations [Juhász, Rieger, Iglói (2001)]

The partition function (with β = 1/(k0T )) is

Z =
∑

σ

exp(−βH(σ)).

With wij = logq (exp(βJij) − 1) for all (i , j) ∈ E (G ) it is

Z =
∑

F⊆E(G)

q
cG (F )+

P

(i,j)∈F wij =
∑

F⊆E(G)

qf (F ).

cG (F ): number of connected components of G (F ) = (V ,F ) and

f (F ) = c(F ) +
∑

(i ,j)∈F

wij .
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Approximation of the partition function

Let f ∗ = max
F⊆E(G)

f (F ) and

Ψ∗
G = set of optimum solutions.

Then, qf ∗ |Ψ∗
G | ≤ Z = qf ∗(|Ψ∗

G | +
∑

F⊆E(G)\Ψ∗

G

qf (F )−f ∗).

For large numbers q it holds

lnZ ≈ f ∗ ln q + ln |Ψ∗
G |.
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Problem formulation

We want to solve the problem

max{f (A) = cG (A) + w(A) : A ⊆ E}, (1)

where
G = (V ,E ) ... is a simple graph
we ∈ R ... are the edge weights
w(A) =

∑
e∈A we ... is the weight of all edges in A

cG (A) ... is the number of connected components
of G (A) = (V ,A).
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A small example
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w(A1) = 0.4, cG (A1) = 2, f (A1) = 2.4

Diana Fanghänel, Frauke Liers Potts model



Outline
Physics background

Problem formulation
The basic algorithm of Anglés d’Auriac et al.

Enhancement of the algorithm
Computational results

A small example

0.7

0.7

0.7

-1

0.7 2

w(A2) = 1.4, cG (A2) = 3, f (A2) = 4.4
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A small example
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w(A∗) = 4.1, cG (A∗) = 2, f (A∗) = 6.1
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Idea of the algorithm

Anglés d’Auriac, Iglói, Preissmann, Sebő (2002)

Let A ⊆ E be optimal for G (U), U ⊆ V . Let v ∈ E\U. Then
there exists an edge set A∗ ⊇ A that is optimal for G (U ∪ {v}).

Let W be a set of components of
G ′ = (U ∪ {v},A) with v ∈ W . Then
adding all edges with endnodes in different
components of W changes the function
value by

w(E (W )) + 1 − |W |.
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Shrinking

We can shrink the connected components of G (U), i.e., the
computed edges.

X ⇒ x

{(v , u) : u ∈ X} ⇒ (v , x) for all v ∈ V \X , weights are added

We can shrink edges e with weight we ≥ 1.
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The basic algorithm of Anglés d’Auriac et al.

Input: A graph G = (V ,E ) with we ∈ (0, 1) for all e ∈ E (G ).

Output: An optimal solution A∗ of G .

1 Set U := ∅ and A := ∅.

2 Choose a vertex v ∈ V \U.

3 Determine a set of nodes W ⊆ U ∪ {v}, v ∈ W that
minimizes |W | − 1 − w(E (W )) by computing a minimum
s − t cut in a graph DU,v .

4 Set U := U ∪ {v}, shrink the vertex set W in the graph G ,
set U := U/W and update the computed edge set A.

5 If U 6= V (G ) go to Step 2.; else output A∗ = A and STOP.
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Consider all incident edges of some node v . If the sum of their
weights is smaller than 1, then these incident edges are not in an
optimal edge set.
All nodes v ∈ V with w(δ(v)) ≤ 1 are successively deleted in G .

Another idea is to recognize the case W = {v} early.

Assume δU(v) = {(v , u) ∈ E : u ∈ U} and
w(δU(v)) ≤ 1. Then W = {v} is optimal
for

|W | − 1 − w(E (W )) → min

s.t. W ⊆ U ∪ {v}, v ∈ W .
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Subgraphs

Let U ⊆ V such that the edge set EU of G (U) is optimal for it.
Then EU ⊆ A∗ for some A∗ ∈ Ψ∗

G .

We can shrink the edge set EU ,i.e. U, in the graph.

Let C be a chordless cycle with n ≥ 3 vertices and edge weights
we ∈ (0, 1) for all edges e ∈ E (C ). If

∑
e∈E(C)(1 − we) ≤ 1, then

E (C ) is optimal for C .

We found similar results for forests, subgraphs of wheels,
complete graphs and special grids.
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Example
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An improved algorithm

Input: G = (V ,E ) with we ∈ (0, 1) for all edges e ∈ E (G ).

1 Set G := G (V \notU), U := ∅ and A := ∅.

2 Choose a vertex v ∈ V \U.

3 While you find a set W ⊆ U ∪ {v}, v ∈ W , such that the
induced edge set E (W ) is optimal for G (W ), shrink W in
U ∪ {v} and G to node v and update A.

4 Determine W ⊆ U ∪ {v} that solves
min{|W | − 1 − w(E (W )) : W ⊆ U ∪ {v}, v ∈ W }.
Shrink W in U ∪ {v} and G . Update A and U.

5 If U 6= V (G ) go to Step 3.; otherwise
Output: The optimum solution A∗ = A.
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Test instances

Tests on:

toroidal square L × L grids with weights w1 ∈ (0, 1) and
w2 = 1 − w1 where p% of the edges have weight w1,

random graphs with n nodes, m edges

OGDF library

Minimum cuts: fast implementation of the Goldberg-Tarjan
Algorithm (mincut package of Jünger, Rinaldi and Thienel)

Diana Fanghänel, Frauke Liers Potts model



Outline
Physics background

Problem formulation
The basic algorithm of Anglés d’Auriac et al.

Enhancement of the algorithm
Computational results

Results

L = 128, w1 = 0.2:
p 80 70 60 50 40 30 20

Basic algorithm 136.7 142.8 150.5 115.6 34.0 16.4 12.9
Improved Method 0.5 4.9 19.5 19.4 5.2 3.3 2.2

Heuristic 0.5 4.6 7.6 3.9 4.5 3.3 2.2

w1 = 0.2, p = 50%:
L 32 64 128 256 512

Basic algorithm 0.55 sec 6 sec 2min 40min -
Improved Method 0.19 sec 1.2 sec 20sec 6min 1h40min

Heuristic 0.01 sec 0.3 sec 4 sec 1min 15min
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L p=80 p=70 p=60 p=50 p=40 p=30
Impr. Meth. 128 9.24 17.26 28.55 74.95 8.09 3.38

Basic Alg. 128 142.64 149.96 150.52 279.99 15.08 13.09
Impr. Meth. 256 118.55 252.29 473.60 2116.18 81.03 32.09

Basic Alg. 256 2248.08 2418.49 2614.13 8454.78 219.73 208.77

Table: Solution times in seconds for grids with w1 = 0.4

n m = 2n m = 3n m = 4n m = 5n
Improved Method 10.000 8.45 20.39 28.92 39.51
Basic algorithm 10.000 22.67 38.72 53.16 67.65

Improved Method 25.000 56.30 156.42 245.02 341.10
Basic algorithm 25.000 146.76 263.78 379.83 502.49

Improved Method 50.000 404.303 929.7325 1318.943 1786.865
Basic algorithm 50.000 697.6215 1297.199 1904.5525 2584.315

Table: Solution times in seconds for random graphs.
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Thank you for your attention!
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