Self-avoiding random walks on percolation clusters: multifractal effects

Viktoria Blavatska^{1,2}, Wolfhard Janke¹

¹ Institut für Theoretische Physik, Leipzig Universität, Leipzig, Germany ² Institute for Condensed Matter Physics, Lviv, Ukraine

Leipzig, 28th November 2008

SAW as a model of polymer chain

- Averaged end-to-end distance: $\langle r \rangle \sim N^{\nu_{\rm SAW}}$
- v_{SAW} universal exponent
- Fractal dimension of SAW: $d_{SAW} = 1/\nu_{SAW}$

Methods of study

Numerical simulations: $(N \sim 10^6)$

 $\nu_{\text{SAW}}(d=2)=0.7496 \pm 0.0001, \ \nu_{\text{SAW}}(d=3)=0.5877 \pm 0.0006$ (Li et al., 1995).

Field theory:

$$\mathcal{H}_{eff} = \int \mathrm{d}^{d}x \left[\frac{1}{2} \left(\mu^{2} |\vec{\varphi}(x)|^{2} + |\nabla \vec{\varphi}(x)|^{2} \right) + \frac{u_{0}}{4!} (\vec{\varphi}^{2}(x))^{2} \right],$$

 $ec{arphi} = \{arphi^1, \dots, arphi^m\}$, polymer limit: m o 0 (P. de Gennes, 1979)

$$\begin{array}{rcl} \nu_{\rm SAW} & = & \frac{1}{2} + \frac{\varepsilon}{16} + \frac{15\varepsilon^2}{64} + \dots, \ \varepsilon = 4 - d; \\ \nu_{\rm SAW}(d=3) & = & 0.5882 \pm 0.0011 \ ({\rm Guida \ and \ Zinn \ Justin, \ 1998}). \end{array}$$

< ロ > < 同 > < 臣 > < 臣 > -

SAWs on disordered lattices: Percolation threshold

Critical site concentration: $p = p_c$.

d	2	3	4	5	6
p _c	0.592	0.311	0.196	0.146	0.108

Fractal dimension of percolation cluster: $\langle \mathcal{N} \rangle \sim L^{d_{p_c}^F}$

d	2	3	4	5	6
$d_{p_c}^F$	91/49	2.51	3.05	3.49	4

Upper critical dimension: $d_c = 6$ (Stauffer, Phys. Reports, 1979)

What happens with SAWs' exponents? $\nu_{D_c}, \gamma_{D_c} = ?$

Methods of study

Field theory (Meir and Harris, 1989):

$$\mathcal{H}_{eff} = \int d^{d}x \frac{1}{2} \sum_{k} \left(\mu_{k}^{2} |\varphi_{k}(x)|^{2} + |\nabla \varphi_{k}(x)|^{2} \right) + \frac{w}{6} \int d^{d}x \varphi_{k_{1}}(x) \varphi_{k_{2}}(x) \varphi_{k_{3}}(x)$$

$$\nu_{p_{c}} = \frac{1}{2} + \frac{\epsilon}{42} + \frac{110\epsilon^{2}}{21^{3}} + \dots, \ \epsilon = 6 - d$$

$$\nu_{p_{c}}(d=2) = 0.785, \ \nu_{p_{c}}(d=3) = 0.671, \nu_{p_{c}}(d=4) = 0.595$$

$$\nu^{(q)} = \frac{1}{2} + \left(\frac{5}{2} - \frac{3}{2q}\right) \frac{\varepsilon}{42} + \left(\frac{589}{21} - \frac{397}{14 \cdot 2q} + \frac{9}{4q}\right) \left(\frac{\varepsilon}{42}\right)^{2}, \ \varepsilon = 6 - d$$

(Janssen, 2007)

Numerical simulations:

 $\begin{array}{l} \nu_{\rho_c}(d=\!\!2)\!\!=\!\!0.783\pm0.003 \quad (\text{Grassberger, 1993}) \\ \nu_{\rho_c}(d=\!\!3)\!\!=\!\!0.667\pm0.003, \nu_{\rho_c}(d=\!\!4)\!\!=\!\!0.586\pm0.003 \ (\text{Blavatska and Janke, 2008}) \end{array}$

Multifractality

- "Population" of *N* members is distributed on the surface
- "Measure" of *i*th cell: $p_i = N_i/N$
- Multifractal moments: $M^{(q)} = \sum_{i} p_{i}^{q} \sim L^{\tau(q)}, \ \tau(q) \neq q \cdot \tau(1)$
- Singularities with Hölder exponents α : $p_j \sim L^{-\alpha}$
- Number of cells with singularity α:

 N(α) ~ L^{f(α)}
- f(α) spectral function, set of fractal dimensions

•
$$\alpha(q) = \frac{\mathrm{d}\tau(q)}{\mathrm{d}q}, \ f(\alpha) = q\alpha - \tau(q)$$

(Hentschel and Procaccia, Physica D 1983)

Backbone of the percolation cluster

- Cutting off "dead ends"
- Geometrical backbone fractal object:

$$\langle \mathcal{N}
angle \sim L^{d^B_{p_c}}$$

d	2	3	4
$ u_{\rm min}$	0.884	0.727	0.638
$d_{p_c}^B$	1.650	1.86	1.95

Pruned-enriched Rosenbluth method (PERM)

Weight of *N*th step: $W_N = \prod_{l=1}^N w_l$ (algorithm of Rosenbluth)

Configurational averaging:
$$\langle (\cdots) \rangle = \frac{\sum W_N(\cdots)}{Z}, \ Z = \sum_{conf} W_N$$

Control parameters: $W_n^{max} = c_1 Z_n / Z_1$, $W_n^{min} = c_2 Z_n / Z_1$ (Grassberger, 1997)

- $W_n < W_n^{min}$ pruning with probability 1/2, $W_n = 2W_n$
- $W_n > W_n^{max}$ enrichment,

$$W_n = W_n/2$$

SAW on percolation clusters: Multifractality

- *L*(*R*) number of SAW trajectories with fixed distance *R* between end points
- L(x) number of trajectories, passing through a site x
- *w*(*x*) = *L*(*x*)/*L*(*R*) "weight" of the site *x*
- Weight distribution:

Multifractal moments

- *d* = 2, 3, 4 dimensional lattices
- L = 500, 200, 50 maximum lattice size
- $R \le L/3$ to avoid finite-size effects
- Multifractal moments:

$$M^{(q)}(R) = \sum_{x} w^{q}(x)$$

• Averaging over disorder:

$$\overline{\textit{M}^{(q)}(\textit{R})}\sim \textit{R}^{1/
u^{(q)}}$$

Spectrum of multifractal exponents

BG result: $\nu^{(q)} = \frac{1}{2} + \left(\frac{5}{2} - \frac{3}{2q}\right) \frac{\varepsilon}{42} + \left(\frac{589}{21} - \frac{397}{14\cdot 2q} + \frac{9}{4q}\right) \left(\frac{\varepsilon}{42}\right)^2$ $\varepsilon = 6 - d$ (Janssen and Stenull, Phys. Rev. E 2007) Our numerical estimates: • q = 0: $\nu^{(0)} = 1/d_{0}^{B} = 0.532 \pm 0.007(d = 3)$ • q = 1: $\nu^{(1)} = \nu_{p_c} = 0.669 \pm 0.007$ (d = 3). • $q \rightarrow \infty$: "red sites" mainly contribute: $N_{
m red} \sim R^{
u_p}$ $\nu_{\rm p}$ – percolation correlation length exponent $\dot{\nu}^{(\infty)} = \nu_0 = 0.852 \ (d = 3)$

Spectral function

- Set of sites x_i with $w(x_i) \sim R^{-\alpha}, \ \alpha_{\min} < \alpha < \alpha_{\max}$
- Number of sites $N_R(\alpha) \sim R^{f(\alpha)}$
- f(α) frequency of observation of a particular value of α
- $f(\alpha) = q\alpha \tau(q), \quad \alpha(q) = \frac{\partial \tau(q)}{\partial q}$ with $\tau(q) = 1/\nu^{(q)}$.

•
$$\alpha_{\min} = \lim_{q \to +\infty} \tau(q)/(q-1),$$

 $\alpha_{\max} = \lim_{q \to -\infty} \tau(q)/(q-1)$

• The maximum value of $f(\alpha)$ gives the fractal dimension of the underlying structure $d^B_{\rho_c}$

(V. Blavatska, W. Janke, Phys. Rev. Lett. 2008)

Conclusions

 SAW reflects universal properties of polymer chain

Percolation threshold:

new universality class

Spectrum of singularities