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Random networksRandom networks

InternetInternet

TransportTransport

NeuronsNeurons

different 
networks

modelled as 
random 
graphs

How to 
generate 
them?

Different methods:
 “physical processes”: growth, rewiring of connections, interactions 

between agents etc.
 “unphysical” but producing desired features much faster

 our algorithm



  

Our methodOur method
 define a statistical ensemble

 sample graphs using a Monte Carlo procedure

AdvantagesAdvantages: wide spectrum, fast, advanced MC methods can be 
used

and then...
 make 

measurements

 simulate some 
processes on 
networks

 etc...



  

More details...More details...
At each time step a new network β is produced by a small 
change of the previous one α

Metropolis algorithm: we accept the new configuration with 
probability

 “Small changes” = rewiring of links

α β



  

 sometimes we need to measure rare events (e.g. P(M≈0) in the Ising model)

 they are rare  small probability  poor statistics
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Multicanonical simulationsMulticanonical simulations

Magnetization M

The idea: increase probability here

e−E e− E r M 
r(M) is some reweighting factor

Multicanonical simulation  (MUCA)

Procedure:
 Do the simulation with modified weights
 Measure quantities of interest
 Do “reweighting” to get averages in the original canonical ensemble

~25 orders of 
magnitude – no 
way to sample it 
in simple MC 
simulations



  

MUCA in networksMUCA in networks
Degree distribution Π(k) = prob. 
that a node has k neighbors

exp. observed distribution

distribution for ∞ network

scaling exponent (depends    
         on network)

some cutoff function

We want to

1) measure α, 2) find the cutoff w(x)

scaling of max. degree

Sampling scale-free networks:

Theoretical line

Numerical 
experiments



  

Standard canonical simulation of Standard canonical simulation of 
networks:networks:

1) Generate graphs with 
weights W(g)

g1    g2      g3     . . . .
2) Measure Π(k) averaged over graphs
3) Calculate w(x) and α from data for 
different sizes

w(x)

x

Problems:
 poor statistics
 only small graphs

Multicanonical simulationMulticanonical simulation

1) generate graphs with weights 
W(g)⋅r(g), with some function r(g)

r(g) chosen to increase the 
probability of rare events – in the tail

g
W

(g
)

without r(g) with r(g)

g

here we want to 
measure

2) Calculate Π(k) with „reweighting 
factor” 1/r(g):

Π(k)=Σg Πmeasured(k,g)/r(g) 

Factors r(g) cancel out and we get Π(k) 
but with much better statistics in the tail!

small 
degrees

large 
degrees



  

Indirect: Flattening P(kmax) – 
the distr. of a maximal degree
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How to realize this procedure in practice, i.e. how r(g) should depend on 
graph’s structure?

P(kmax)

flatten P(kmax)

Π(k)

flatten Π(k)
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Two methods:Two methods:
Direct: Flattening П(k) 
(but only at one node)

Algorithm:
• local moves like in simple MC, but weights multiplied by r(k) or r(kmax)
• multicanonical recursion (Wang-Landau or W. Janke)
• range of k divided into sub-ranges – speed up simulations – then glueing results

kmax
k



  

Example: a graph with Π(k)~k-3 
 and N=1000 nodes

Π(k):
theoretical for N=∞

exp. from simple MC

exp. from MUCA

full range of k

w(x), x=k/N1/2

theoretical for N=1000
exp. from simple MC
exp. from MUCAw(x)

plots of w(x) in log-
scale



  

Example: large graphs with П(k)~k-3


