Multicanonical simulation of networks

<u>B. Waclaw¹</u>, L. Bogacz², W. Janke¹

¹Institut für Theoretische Physik, Universität Leipzig, Germany ²Department of Physics, Jagellonian University, Kraków, Poland

Random networks

Different methods:

 "physical processes": growth, rewiring of connections, interactions between agents etc.

"unphysical" but producing desired features much faster

🔷 our algorithm

Our method

- define a statistical ensemble
- sample graphs using a Monte Carlo procedure

Advantages: wide spectrum, fast, advanced MC methods can be used

More details...

- At each time step a new network β is produced by a small change of the previous one α
- Metropolis algorithm: we accept the new configuration with probability

$$P_{\alpha\beta} = \min\left\{1, \frac{W_{\beta}}{W_{\alpha}}\right\}$$

Small changes" = rewiring of links

Multicanonical simulations

◆ sometimes we need to measure rare events (e.g. $P(M \approx 0)$ in the Ising model)

◆ they are rare \rightarrow small probability \rightarrow poor statistics

Procedure:

- Do the simulation with modified weights
- Measure quantities of interest
- Do "reweighting" to get averages in the original canonical ensemble

MUCA in networks

Standard canonical simulation of networks:

1) Generate graphs with weights W(g)

3) Calculate w(x) and α from data for different sizes

Multicanonical simulation

1) generate graphs with weights $W(g) \cdot r(g)$, with some function r(g)

r(g) chosen to increase the probability of rare events - in the tail

2) Calculate $\Pi(k)$ with "reweighting factor" 1/r(g):

 $\Pi(k)=\Sigma_g \Pi_{measured}(k,g)/r(g)$

Factors r(g) cancel out and we get $\Pi(k)$ but with much better statistics in the tail!

How to realize this procedure in practice, i.e. how r(g) should depend on graph's structure?

Two methods:

Algorithm:

- \cdot local moves like in simple MC, but weights multiplied by r(k) or r(k_{max})
- multicanonical recursion (Wang-Landau or W. Janke)
- range of k divided into sub-ranges speed up simulations then glueing results

Example: a graph with $\Pi(k) \sim k^{-3}$ and N=1000 nodes

