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Magnetization histograms

Distribution function of the magnetization p(m) =
1

Z
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e−H(K)/kBT

K: con�gurations with magnetization m
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isotropic nn model, L×L sites, periodic boundary conditions, near critical temperature

kBTc/J = 2.269...

Observations: T < Tc: two-peak structure

T > Tc: p(m) approaching Gaussian function for larger L

Characterization of distributions by moments and/or cumulants:

Binder cumulant
Fourth-order cumulant of the distribution function of the magnetization

U = 1 − < M4 >

3 < M2 >2
(Binder, 1981)
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Binder cumulant in the

thermodynamic limit:

U(T ) =


2
3 T < Tc

U∗ T = Tc

0 T > Tc

From crossing points of U(L1) = U(L2), one may estimate conveniently Tc;

U∗: critical Binder cumulant (universal?)
U∗ = 0.61069... (Kamieniarz+Blöte, 1993)

isotropic nn Ising model, square shape, periodic boundary conditions

PREVIOUS results: Isotropic nn square lattice

Ising model with square shape

I U∗ has been found to be,

employing periodic bc, INDEPENDENT of:

+ spin value

S=1/2, S=1 (Nicolaides and Bruce, 1988)

+ discrete or continuous nature of (Ising-type) spin variable

Nicolaides and Bruce, 1988; Kamieniarz and Blöte, 1993

I On the other hand, for the isotropic nn square Ising model,

U∗ has been observed to DEPEND on

+ boundary conditions

periodic, free, �xed,...boundaries
K.Binder, D.W. Heermann, W.Janke, D.P.Landau, A. Milchev,...(scattered

results)

Varying shape, lattice type, and anisotropy

With periodic bc, U∗ has been found/argued to DEPEND on

I Shape of the lattice
L

rL
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U∗(r): isotropic, square nn Ising model

with rectangular shape, aspect ratio r; ex-

act calculations augmented by �nite-size

extrapolations

Kamieniarz and Blöte (K+B), 1993

I Lattice type(?)

Slightly di�erent values of U∗ for isotropic nn Ising models on square

lattice with square shape and on triangular lattice with rhombus shape

(K+B, 1993)

I Anisotropy of nn couplings, Jv/Jh:
U∗ = U∗(Jv/Jh)

for square shapes, r = 1; with a mapping onto the isotropic nn Ising

model with rectangular shape so that

U∗(r = 1, Jv/Jh) = U∗(r, Jv/Jh = 1) where

sinh (2Jh/kBTc(Jv/Jh)) = r,

(which follows from setting r = ξv/ξh; ξ correlation length) (K+B, 1993)

I Anisotropy of nnn couplings, Jd:
U∗ = U∗(Jd/J),

but there is no mapping

U∗(Jd/J, r = 1) = U∗(0, r), which would keep rectangular symmetry

(Chen+Dohm, 2004)

Our aim: Monte Carlo study on those (non)universal aspects of U∗

PRESENT results: isotropic nn Ising model on

square lattice � various boundary conditions
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boundary dependence of  U* for square lattice nn Ising model

Cumulant at Tc for square lat-

tice with free, periodic, mixed

and other boundary conditions

fbc

pbc

Subblocks (Binder, 1981): squares of size bL ∗ bL, embedded in square of L ∗L
sites; 'heat bath bc' when b −→ 0, with U∗ = 0.560± 0.002

Mixed bc: pbc for two opposite sides, fbc for the other two opposite sites of

squares of size L2
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Cumulant at Tc for square

lattice, L = 60, with periodic

and free boundary conditions

Note: less pronounced two-peak-distribution for free boundary conditions, and U∗ is

smaller than in the case of periodic boundary conditions

Isotropic nn Ising model on triangular and square

lattices
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W.S., E. P.J.B, 2006; J.Stat.Mech, 2007

Suggestion: For given shape, isotropic models lead to the same U∗ (checked, in

addition, for other rectangular shapes)

Square lattice with di�erent nn (horizontal and

vertical) couplings
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U*(r) for Jv=Jh=J, and predicted U*(Jv/Jh) at r=1

PREDICTION:

U∗(Jv = Jh, r)=

U∗(Jv/Jh, r = 1) such that:

sinh (2Jh/kBTc) = r

(K+B, 1993)

To be checked by MC simulations:

Checking the prediction
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as compared to previous �n-

dings on U∗(Jv/Jh = 1, r) in

the isotropic case, presuming

the mapping

Our �ndings con�rm the predicted mapping

U∗(Jv/Jh, r = 1) = U∗(Jv/Jh = 1, r) with sinh (2Jh/kBTc) = r

Square lattice with anisotropic nnn interactions

Statements of Chen and Dohm (2004):

I U∗(Jd/J, r = 1) varies continuosly with Jd/J

I Keeping rectangular symmetry, there is no mapping of U∗

onto the isotropic case such that

U∗(r = 1, Jd/J) = U∗(r, Jd/J = 0)

I In general: Violation of 'two-scale-factor universality' due to

anisotropy

Checking by simulations
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model on square lattice
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tropic case, Jd = 0

Overshooting: No mapping with U∗(Jd/J, r = 1) = U∗(Jd/J = 0, r)

Note: U∗ of square lattice nnn Ising model, Jd = J , with square shape is identical to

that of the triangular lattice nn Ising model with rhombus shape (similarily for other

ratios of Jd/J (Dohm, 2006)).

Question: Can dependence of U∗ on anisotropy be transcribed, in general, into

dependence on shape?

Critical Binder cumulant in (an)isotropic systems

and Wulf shape
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parison: nn and nnn cases, free

bc, with square shapes, L2 si-

tes.

Recall: The equilibrium Wulf shape, at Tc, of an Ising droplet results from the orienta-

tional dependence of the surface free energy at criticality, re�ecting the interactions.

Note:

There are the same spins in the rotated ellipse for the anisotropic nnn, Jd = J ,

Ising model on the square lattice and in the circle for the nn Ising model on the

triangular lattice;

thence U∗(nnn,sq,ellipse)=U∗(iso nn,tria,circle)= U∗(iso nn,sq,circle)

Question(suggestion):

Does U∗ take a generic/unique value when one considers systems

(free bc) with their Wulf shape at criticality ?

Conclusions: • The critical Binder cumulant U ∗ in 2d Ising models depends on boundary conditions, system shapes, anisotropy of interactions.

• For isotropic models, U ∗ depends on shape and boundary conditions, but not on details of interactions and lattice type.

• For given boundary condition, the dependence of U ∗ on ANISOTROPY may be mapped onto a dependence on the SHAPE: verification for the nn anisotropic case, keeping
rectangular symmetry; evidence for the nnn anisotropic Ising model, considering rhombus (parallelogram) shapes.

• Question: Can a generic/unique value of U ∗ be obtained for Ising models with a shape following from the Wulf construction at criticality, using, e.g., free boundary conditions?
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