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Lattice calculations gives access to a number of
fundamental physical observables which are typical low

energy quantities, e.g.
» masses

Improvement

» decays
» hadronic structure functions (PDF, GPD, dipole
moments, ...)
Basic requirements:

» powerful computers

» IBM Blue Gene/P: O(220 x 10'2) floating point
operations/second peak performance (Jilich, 2008)

» special purpose QCD computers

» effective algorithms: inverters, solvers, ...

» clever formulations: lattice results: (hypercubic,
finite volume, finite lattice spacing) <+ measured
results: (continuum, infinite volume)
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Starting point of lattice calculations: action of underlying
fermionic (1) and gauge fields (U(A) = exp(iagA)) on a
lattice with lattice spacing a

Sattice(, U, @) = Stermion(¥, U, @) + Sgauge(U, a)

Siatiice(V, U, @) is not unique - lot of different realizations
Essential constraints:

» underlying symmetries

—0)
> Siattice(V, U, a )(a Scontinuum (¢, A)

Benefit: computational efficiency, diminishing lattice
artefacts, acceleration of convergence to continuum
Potential items for improvement:

> Stermion(1, U, a) - formulation of fermionc action
> Sgauge(U, @) - formulation of gauge action
» U(A) - representation of the gauge field itself
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One special class to be used in the future simulations:
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Reducing the effect of chiral symmetry breaking of light
flavors — UV-filtering
We use stout smearing(Mornigstar and Peardon [2004)) :

U—=UD S yd... 5y = [

U (x) = e/ (Uw) U (x)

1y {m+ -Q -
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Many fermions on the market
» Wilson fermions
» domain wall fermions
» staggered fermions
» overlap fermions
» clover fermions

Symanzik improvement scheme (reducing discretization
errors order by order) — applied to fermions by
Sheikholeslami and Wohlert [1985] — clover fermions

I W/
fce?r\;%n((/) U,a) = ferlrflzgv(wv U, a) + Sfermlon(¢7 U, a)
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SWison () U,a) = 4Z¢ )Dw (U, a) (x)

DI 0(x) + O()

1 .
Dw(U, a) = E(W(V; + V) - arVMVM)
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with (massless case)

SWison () U,a) = 4Z¢ )Dw (U, a) (x)

(829 gt Z D(x V(x) +O(2)

1
Dw(U.a) = 5 (% (V4 +V,) — arvzvu)

and clover term

SN o, U,8) = "SWga ST G (X0 FEO (x)(x)

X pv

(T =120V — YY) Fﬁ{?vef(x): field strength in clover
form)
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Fermionic action

csw should be tuned to cancel O(a) lattice errors;
determination in non-perturbative way preferred - but
technically difficult

first step: calculation in lattice perturbation theory (LPT):

csw=1+ 92 Cgv)v + (9(94)

First determinations of Cgv)v in the on-shell regime have
been published by:

Wohlert[1987] (twisted antiperiodic b.c., plaquette action)
Lischer and Weisz[1996] (Schrédinger functional,
plaquette action)

Aoki and Kuramashif2003] (Conventional LPT, improved
gauge actions)
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O(a) improvement - off-shell

This talk:
Symanzik gauge action +

clover fermions +
off-shell —
quark field improvement Martinelli et al. [2001]:

Y =(1+acp D+ aig CNGIA)Y

¢p has been determined to one-loop order (e.g., QCDSF
collaboration [2001])

cnal = 97 +0(g%

It needs either a two-loop calculation of quark propagator
or an one-loop calculation of the quark-quark-gluon
vertex.
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qqg-Vertex

Looking for quantity — one-loop information for csy,
quark-quark-gluon-vertex (V4gg): it contains to lowest
order the improvement parameter cs, — one-loop
calculation sufficient

Via(p1,p2) = —igt?y, — gt?Fari(py + p2),
+(1+¢° ng/)igta%araua(m — P2)a
+0(&?)

Strategy: Calculate the related non-amputated

three-point function G,, to one-loop and demand that all

O(a) terms cancel — C(s1v)v
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Improvement relation

Gu(P1, P2, €5 €)= S(P2)Au(Pr, P2, €5 €112 S(p1)

with quark propagator S(p)

sp) = 1 SO B e 7 (-5
iPp(P?) + SamPIpw(p?) | ipTp(P?) | 27 [Ep(p?))?

and amputated three-point function A,

Au(P2.p1,c)) = Awu(paspr) +ag® cll By + vuly)
1 . Zw(pe) 1 Zw(p1)
3o oy Mo Pe 1) = ST A (Pe ) Py T
iy 1 .
— conditions on C(sm)/ and to get the improved

three-point function A, ,,(p2, p1)
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Feynman rules p/ \ by
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The diagrams needed for the one-loop calculation of Vg,
are

.

‘%

2

=

j=3

/ )\ %
T
/ 000 . f

Feynman rules p/ \ by

(d)

Stout smearing makes the Feynman rules very

complicated (for local operators see Capitani, Dirr and
Hoelbling [2006])
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Vabc

Fabe (ki ko, k)

Feynman rules aByu

1
fL}fw(kukz,ka)

2
fc(x[)hu(kmkz,ks)

3
fc(xl)a.yu(kth’kS)

i~ (P2, P, ki, Ko, k3, w)

Example: gqggg-Vertex and stout smearing

DY { [Fiefw(kw s ko, k3) + cyclic perm-} -

6w [T::C un(k1)gﬁ_yu(k2,k3) + cyclic perml} .

be (1 b 2 2
TR )k ke ka) + TE0 (12) (ks ks ka) — 12) 5 (hr g, K)) +

1
abc abc \ #(3)
(2 - 58™) 1tk ke ko)

VOLM(k1 ,w) Vﬁli(k27 w) v"rﬂ(kﬁv w),

’
Vau(ki, w) Vg (ke w) 6y p — > Sapdppu Voyulks, w) +

S SRR A

wlap [Cu(’ﬁ — ko) cg(2kg + Ky + kp) Sy + sp(kg) s (k3 + 2ky) 53,;]
285y [(BWaulki, ke + k) + Vau (ki + ko + Ks)) S +

1253(k1) sa(ke) sa(ks) (sg(ki + ko + k3) Sap — sal(ki + k2 + k3)5/3“)]
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Notation:

T;asbc _ {Ta’ {-[-b7 Tc}} , T:gc _ [Ta’ [Tb, TC]], Tsa:c _ {-,—a7 [Tb, Tc]}

su(k) = sin (gk“> . cu(k) = cos (g@) B CEDEAGE

0
SLlhi k) =D sulks + ko) sk — kp) = s2(ky) — 2 (ko)
I
Feynman rules
= dcu(p2+p1) vu 1 su(P2 +pr)
= isu(p2 +p1)7u_’cu(p2+p1)
Vo (k, w) = Sap + 4w Vay(k)
Vou(k) = sa(k) su(k) — Sap s°(k)
Japulki, ko) = dapcalk +k) su(ky — ko) —

Sapcalke) sg(2k + ko) + 5, cp(k) sa(2ke + Kq)

Wy (K1 5 k2) saclkt + k) sulkt — ko) — S Pk ko) s Wau(k,0) = Vau(K)
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Ward identity demands to be independent on color
factor Cr
We get

0.0014260 N; — 0.0116643 N w
0.0011781 N; — 0.0096247 N w
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For stout smearing and plaquette action we get for N; = 3

(%9 = 0.268588 + 1.46772. — 5.76993 2

Csw

which coincides for w = 0 with all previous given results.

Determination of cg,




One-loop csy

QCDSF
collaboration

Determination of cg,

Results for CS,V) have been published for Wilson fermions
and various gauge actions.
For stout smearing and plaquette action we get for N; = 3

cll.Plad) — 0 268588 + 1.46772w — 5.76993 .2

which coincides for w = 0 with all previous given results.
For Symanzik action we get

eSS — 0.196244 4 1.137452 0 — 4.180291 .2

which should be compared to the w = 0 value of
Aoki/Kuramashi: 0.19624449(1)
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This investigation has been supported bei DFG under contract
FOR 465.
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