Protein Folding Simulations

Pedro Ojeda¹

Aurora Londoño² Nan Chen³ Martin García¹

(日)

¹Theoretical Physics Department, Kassel University, Germany

²Department of Molecular Biology IPICYT, México

> ³Institute of Physics Academia Sinica, Taiwan

Computational Physics 2007, Leipzig

Ojeda, Londoño, Chen, García Protein Folding Simulations

Outline

IntroductionThe Protein Folding Problem

Theoretical Methods

- Energy Landscape Paving
- Wang-Landau Algorithm

Results of the Simulations

- Ground State Structures
- Density of States and Thermodynamical Properties

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

2

Introduction

• The Protein Folding Problem

- **Theoretical Methods**
- Energy Landscape Paving
- Wang-Landau Algorithm

Results of the Simulations

- Ground State Structures
- Density of States and Thermodynamical Properties

(日)

Outline

2

Introduction

• The Protein Folding Problem

- Theoretical Methods
 - Energy Landscape Paving
 - Wang-Landau Algorithm

3 Results of the Simulations

- Ground State Structures
- Density of States and Thermodynamical Properties

<<p>・

Proteins

Outline

- Theoretical Methods
 - Energy Landscape Paving
 - Wang-Landau Algorithm
- 3 Results of the Simulations
 - Ground State Structures
 - Density of States and Thermodynamical Properties

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Proteins

The Polypeptide Chain

Schematic structure of Bovine Pancreatic Ribonuclease¹

¹Christian B. Anfinsen, *Nobel Lecture*, 1972

Ojeda, Londoño, Chen, García

Protein Folding Simulations

Introduction Methods

> Results Summary

Proteins

Interaction between Aminoacids

Forces

- Repulsive forces between atoms and residues (LJ).
- Hidrogen bond bewteen NH-CO pairs.
- Dipole-Dipole interaction between NH-CO pairs.
- Water effects on Hydrophobic and Hydrophilic aminoacids.

$$\mathbf{V_{T}} = \mathbf{V_{LJ}} + \mathbf{V_{HB}} + \mathbf{V_{DD}} + \mathbf{V_{MJ}} + \mathbf{V_{LocalHP}}$$

(日)

Introduction

Methods Results Summary

Proteins

The main problem in Protein Folding

Goal of Protein Folding Simulations

 Given a sequence of aminoacids one should predict the native structure.

・ロ・ ・ 四・ ・ 回・ ・ 日・

-1

Energy Landscape Paving Wang-Landau Algorithm

(日)

Outline

- 3 Results of the Simulations
 - Ground State Structures
 - Density of States and Thermodynamical Properties

Energy Landscape Paving Wang-Landau Algorithm

(日)

Energy Landscape Paving

ELP

The Free-energy landscape is deformed to explore low- energy configurations while avoiding at the same time entrapment in local minima^{*a*}. The weight of a configuration is,

$$\mathbf{w}(\mathbf{ ilde{E}}) = \mathbf{e}^{-\mathbf{ ilde{E}}/k_{B}\mathsf{T}}$$
 with $\mathbf{ ilde{E}} = \mathbf{E} + f\left[\mathsf{H}(\mathsf{q},t)
ight]$

f[H(q, t)] is a function of a histogram which keeps the record of Monte Carlo's process.

^aPRL 88 068105 (2002)

Energy Landscape Paving Wang-Landau Algorithm

(日)

Outline

- Ground State Structures
- Density of States and Thermodynamical Properties

Energy Landscape Paving Wang-Landau Algorithm

(日)

Wang-Landau Algorithm

W-L Algorithm

W-L is a method that calculates the density of states (DOS)^a

- Set the DOS to g(E) = 1 and a function H(E) = 1,
- If E₁ and E₂ are the energies before and after some change, the transition probability is,

$$\mathbf{P}(\mathbf{E_1}
ightarrow \mathbf{E_2}) = \text{ min } \left[egin{matrix} \mathbf{g}(\mathbf{E_1}) \ \mathbf{g}(\mathbf{E_2}) \ \mathbf{f} \end{bmatrix}$$

Seach time the energy level E is visited, we modify the density of states g(E) → g(E) × f, f_{i+1} = √f_i.

^aPRL **86** 2050 (2001)

Energy Landscape Paving Wang-Landau Algorithm

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Wang-Landau Algorithm

W-L Algorithm

W-L is a method that calculates the density of states (DOS)^a

- Set the DOS to g(E) = 1 and a function H(E) = 1,
- If E₁ and E₂ are the energies before and after some change, the transition probability is,

$$\mathbf{P}(\mathbf{E_1} \rightarrow \mathbf{E_2}) = \text{ min } \left[\frac{\mathbf{g}(\mathbf{E_1})}{\mathbf{g}(\mathbf{E_2})}, \mathbf{1} \right]$$

③ Each time the energy level **E** is visited, we modify the density of states g(E) → g(E) × f, $f_{i+1} = \sqrt{f_i}$.

^aPRL **86** 2050 (2001)

Energy Landscape Paving Wang-Landau Algorithm

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Wang-Landau Algorithm

W-L Algorithm

W-L is a method that calculates the density of states (DOS)^a

- Set the DOS to g(E) = 1 and a function H(E) = 1,
- If E₁ and E₂ are the energies before and after some change, the transition probability is,

$$\textbf{P}(\textbf{E_1} \rightarrow \textbf{E_2}) = \text{ min } \left[\frac{\textbf{g}(\textbf{E_1})}{\textbf{g}(\textbf{E_2})}, \textbf{1} \right]$$

Sector 2 Each time the energy level E is visited, we modify the density of states g(E) → g(E) × f, f_{i+1} = $\sqrt{f_i}$.

^aPRL 86 2050 (2001)

Energy Landscape Paving Wang-Landau Algorithm

Thermodynamical Properties

Partition Function

$$\mathcal{Z}(\mathbf{T}) = \int \mathbf{g}(\mathbf{E}) \mathbf{e}^{-eta \mathbf{E}} \, \mathbf{d} \mathbf{E}$$

Free Energy

$$\mathbf{F}(\mathbf{T}) = -\mathbf{k}_{\beta}\mathbf{T}\ln(\mathcal{Z}(\mathbf{T}))$$

Internal Energy $U(T) = \frac{\int Eg(E)e^{-\beta E}}{\int g(E)e^{-\beta E}}$

Ojeda, Londoño, Chen, García Protein Folding Simulations

Energy Landscape Paving Wang-Landau Algorithm

Thermodynamical Properties

Partition Function

$$\mathcal{Z}(\mathbf{T}) = \int \mathbf{g}(\mathbf{E}) \mathbf{e}^{-eta \mathbf{E}} \, \mathbf{d} \mathbf{E}$$

Free Energy

$$\mathbf{F}(\mathbf{T}) = -\mathbf{k}_{\beta}\mathbf{T}\ln(\mathcal{Z}(\mathbf{T}))$$

Internal Energy

$$\mathbf{J}(\mathbf{T}) = \frac{\int \mathbf{E} \mathbf{g}(\mathbf{E}) \mathbf{e}^{-\beta \mathbf{E}}}{\int \mathbf{g}(\mathbf{E}) \mathbf{e}^{-\beta \mathbf{E}}}$$

Ojeda, Londoño, Chen, García

Protein Folding Simulations

(日)

Energy Landscape Paving Wang-Landau Algorithm

Thermodynamical Properties

Partition Function

$$\mathcal{Z}(\mathsf{T}) = \int \mathsf{g}(\mathsf{E}) \mathsf{e}^{-\beta \mathsf{E}} \mathsf{d}\mathsf{E}$$

Free Energy

 $\mathbf{F}(\mathbf{T}) = -\mathbf{k}_{\beta}\mathbf{T}\ln(\mathcal{Z}(\mathbf{T}))$

Internal Energy

$$\mathbf{U}(\mathbf{T}) = \frac{\int \mathbf{E} \mathbf{g}(\mathbf{E}) \mathbf{e}^{-\beta \mathbf{E}}}{\int \mathbf{g}(\mathbf{E}) \mathbf{e}^{-\beta \mathbf{E}}}$$

Ojeda, Londoño, Chen, García

Protein Folding Simulations

ヘロア 人間 アメヨア メヨア

Ground State Structures DOS

Outline

- Ground State Structures
- Density of States and Thermodynamical Properties

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Ground State Structures DOS

Sequence:

Thr-Val-Thr-Phe-Thr-Gly-Gly-Thr-Leu-Lys-Val-Tyr

FIG. 7. Energy vs. MCS using the number of native contacts (Q) as a parameter in f(Q, t).

FIG. 8. Energy vs. MCS using the number of beta-sheet contacts (n_{β}) as a parameter in $f(n_{\beta}, t)$.

<<p>・

크

Ground State Structures DOS

Sequence: Ala-Leu-Asn-Gln-Ala-Leu-Asn-Gln-Ala-Leu

FIG. 9. Energy vs. MCS using the number of native contacts (Q) as a parameter in f(Q, t).

FIG. 10. Energy vs. MCS using the number of helical contacts (n_H) as a parameter in $f(n_H, t)$.

(日)

Ground State Structures DOS

2G9P Peptide

FIG. 11. Energy vs. MCS using the number of native contacts (Q) as a parameter in f(Q, t).

FIG. 12. Number of native contacts vs. MCS using the number of native contacts (Q) as a parameter in f(Q, t).

(日)

Ground State Structures DOS

Outline

- Ground State Structures
- Density of States and Thermodynamical Properties

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Ground State Structures DOS

Folding within a Chaperonin

Chaperonin

A Chaperonin is a protein with a cage form. The function of the Chaperonin is the regulation the folding process.

FIG. 13. Chaperonin structure.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Ground State Structures DOS

Folding within a Chaperon

Simulation of the cage

We are taking a spherical potential with soft walls ^a

$$V_1 = \frac{0.01}{R_c} \left[e^{r-R_c}(r-1) - \frac{r^2}{2} \right]$$

^aJ. Chem. Phys. **118** 8042 (2003), Biophys. Jour. **90** 1767 (2006)

FIG. 14. Confinment potential.

Introduction Methods Results Summary	Ground State Structures DOS
--	--------------------------------

1NJ0 Peptide 16 aminoacids

FIG. 15. Log of the DOS for different radii of the barrier.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Methods Results Summary	Ground State Structures DOS
--	--------------------------------

1NJ0 Peptide 16 aminoacids

FIG. 16. Specific heat for different radii of the barrier.

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

-2

Ground State Structures DOS

Folding within a Chaperon

Simulation of the cage

We have considered also the hydrophobic effects of the chaperone surface by using the potential, a

$$V_{2} = 4\epsilon_{h} \frac{\pi R_{c}}{r} \left(\frac{1}{5} \left[\left(\frac{\sigma}{r - R_{c}} \right)^{10} - \left(\frac{\sigma}{r + R_{c}} \right)^{10} \right] - \frac{\epsilon}{2} \left[\left(\frac{\sigma}{r - R_{c}} \right)^{4} - \left(\frac{\sigma}{r + R_{c}} \right)^{4} \right] \right)$$

Rc is the radious of the cage, $\epsilon_h = 2.54$ Kcal/mol

^aJ. Chem. Phys. **118** 8042 (2003), Biophys. Jour. **90** 1767 (2006)

Ground State Structures DOS

Potential barriers

FIG. 17. Potentials used to study the confinment effects. $R_c = 15$ Å. V_1 simulates the confinment purely but V_2 takes into account also the hydrophobicity inside the chaperone.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Introduction Methods Results Summary	Ground State Structures DOS

1NJ0 Peptide 16 aminoacids

FIG. 18. Log of the DOS for different radii of the barrier.

Introduction Methods Results Summary	Ground State Structures DOS
--	--------------------------------

1NJ0 Peptide 16 aminoacids

FIG. 19. Specific heat for different radii of the barrier.

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

-2

Summary

Summary

- We can obtain the lest energy structures given a sequence using the potentials as in the Yow's model^a.
- To obtain the ground state structure we perform ELP simulations. The obtained structures are in good agreement with the models in the Protein Data Bank.
- We have found that the Chaperones have influence on the folding process. We have observed a reduction in the number of accesible states when a potential barrier is present.

^aPRL 96 078103 (2006)

THANKS FOR YOUR ATTENTION!

Ojeda, Londoño, Chen, García Protein Folding Simulations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで