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The Polypeptide Chain

Schematic structure of Bovine Pancreatic Ribonuclease1

1Christian B. Anfinsen, Nobel Lecture, 1972
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Interaction between Aminoacids

Forces
Repulsive forces between atoms and residues (LJ).
Hidrogen bond bewteen NH-CO pairs.
Dipole-Dipole interaction between NH-CO pairs.
Water effects on Hydrophobic and Hydrophilic aminoacids.

VT = VLJ + VHB + VDD + VMJ + VLocalHP
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The main problem in Protein Folding

Goal of Protein Folding Simulations

Given a sequence of aminoacids one should predict the
native structure.
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Energy Landscape Paving

ELP
The Free-energy landscape is deformed to explore low- energy
configurations while avoiding at the same time entrapment in
local minimaa. The weight of a configuration is,

w(Ẽ) = e−Ẽ/kBT with Ẽ = E + f [H(q, t)]

f [H(q, t)] is a function of a histogram which keeps the record of
Monte Carlo’s process.

aPRL 88 068105 (2002)
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Wang-Landau Algorithm

W-L Algorithm

W-L is a method that calculates the density of states (DOS)a

1 Set the DOS to g(E) = 1 and a function H(E) = 1,
2 If E1 and E2 are the energies before and after some

change, the transition probability is,

P(E1 → E2) = min
[

g(E1)

g(E2)
, 1
]

3 Each time the energy level E is visited, we modify the
density of states g(E)→ g(E)× f, fi+1 =

√
fi.

aPRL 86 2050 (2001)
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Thermodynamical Properties

Partition Function

Z(T) =

∫
g(E)e−βE dE

Free Energy

F(T) = −kβT ln(Z(T))

Internal Energy

U(T) =

∫
Eg(E)e−βE∫
g(E)e−βE
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Sequence:

Thr-Val-Thr-Phe-Thr-Gly-Gly-Thr-Leu-Lys-Val-Tyr

FIG. 7. Energy vs. MCS using the

number of native contacts (Q) as a

parameter in f (Q, t).

FIG. 8. Energy vs. MCS using the

number of beta-sheet contacts (nβ ) as a

parameter in f (nβ , t).
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Sequence: Ala-Leu-Asn-Gln-Ala-Leu-Asn-Gln-Ala-Leu

FIG. 9. Energy vs. MCS using the

number of native contacts (Q) as a

parameter in f (Q, t).

FIG. 10. Energy vs. MCS using the

number of helical contacts (nH ) as a

parameter in f (nH , t).
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2G9P Peptide

FIG. 11. Energy vs. MCS using the

number of native contacts (Q) as a

parameter in f (Q, t).

FIG. 12. Number of native contacts vs.

MCS using the number of native

contacts (Q) as a parameter in f (Q, t).
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Folding within a Chaperonin

Chaperonin
A Chaperonin is a protein with a cage form. The function of the
Chaperonin is the regulation the folding process.

FIG. 13. Chaperonin structure.
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Folding within a Chaperon

Simulation of the cage

We are taking a spherical potential with soft walls a

V1 =
0.01
Rc

[
er−Rc(r− 1)− r2

2

]
aJ. Chem. Phys. 118 8042 (2003), Biophys. Jour. 90 1767 (2006)

FIG. 14. Confinment potential.
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1NJ0 Peptide 16 aminoacids
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FIG. 15. Log of the DOS for different radii of the barrier.
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1NJ0 Peptide 16 aminoacids
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FIG. 16. Specific heat for different radii of the barrier.
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Folding within a Chaperon

Simulation of the cage
We have considered also the hydrophobic effects of the
chaperone surface by using the potential, a

V2 = 4εh
πRc

r

(
1
5

[(
σ

r− Rc

)10

−
(

σ

r + Rc

)10
]

− ε

2

[(
σ

r− Rc

)4

−
(

σ

r + Rc

)4
])

Rc is the radious of the cage, εh = 2.54Kcal/mol
aJ. Chem. Phys. 118 8042 (2003), Biophys. Jour. 90 1767 (2006)

Ojeda, Londoño, Chen, Garcı́a Protein Folding Simulations



Introduction
Methods
Results

Summary

Ground State Structures
DOS

Potential barriers
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FIG. 17. Potentials used to study the confinment effects. Rc = 15 Å. V1 simulates the

confinment purely but V2 takes into account also the hydrophobicity inside the

chaperone.
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1NJ0 Peptide 16 aminoacids
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FIG. 18. Log of the DOS for different radii of the barrier.
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1NJ0 Peptide 16 aminoacids
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FIG. 19. Specific heat for different radii of the barrier.
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We can obtain the lest energy structures given a sequence
using the potentials as in the Yow’s modela.
To obtain the ground state structure we perform ELP
simulations. The obtained structures are in good
agreement with the models in the Protein Data Bank.
We have found that the Chaperones have influence on the
folding process. We have observed a reduction in the
number of accesible states when a potential barrier is
present.

aPRL 96 078103 (2006)
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THANKS FOR YOUR ATTENTION!
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