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Outline

e Simple all-atom model for protein simulations
e Aggregation of a segment of Alzheimerg Apeptide
e Mechanical unfolding of a fibronectin type Il module



Protein model

All atoms

Only torsional degrees of freedom
Implicit solvent

Four main energy terms:

E = Ejoc + Eexv+ Enp + Esc

. Local electrostatic interaction

between backbone dipoles

. Excluded volume, Ar *? repulsion
: Hydrogen bonds
. Effective side-chain interaction,

two parts: hydrophobicity and charged
side chains



Protein model

Parameters calibrated by comparing to folding experiments

Latest version agrees reproduces experimentally obtaiatd
on structure and thermodynamics of 15-20 different pepfide
using one and the same parameter set

Projects:

Mechanical unfolding

Aggregation

Properties of semiconductor-binding peptides
Folding of peptides and proteins

Available as free software, PROFASI:
http://cbbp.thep.lu.se/activities/profasi/



Amyloid aggregation — Experimental background

e Aggregation of proteins linked to many diseases, e g
Alzheimer’s, Parkinson’s & Huntington’s

e Aggregation— amyloid fibrils— plaques in the brain

e Small oligomers important pathogenic agent? One
proposed mechanism: ion-specific channels in neuronal
cell membranes

e Oligomers transient species in vitro, difficult to
characterize experimentally

e Certain fragments of these proteins share many
characteristics with the full-size proteins



Aggregation — Simulations

We perform Monte Carlo simulations on a 7-residue
fibril-forming peptide derived from Alzheimer’s Apeptide,
Ap(16-22)

Sequence: KLVFFAE

Important segment: experiments have shown that substitofi
either of the phenylalanines in the full molecule reduces
aggregation propensity dramatically

Simulations:
e Six chains in a periodic box, 58

e Simulated tempering, temperature range 290 — 370 K
e Random starting configurations



Aggregate size analysis

Measure probabilities of different
peptide-cluster sizes
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Aggregation — Barrel formation

The most stable structure seen in our simulations wadbarrel
that formed spontaneously in one of our runs

e Structure geometrically similar to barrels in proteins
e Barrels are interesting candidates for ion-channels




Mechanical unfolding — fibronectin

e Fibronectin: huge protein, converts chemical signals to
mechanical signals (and vice versa) at interface between
extra-cellular matrix and membrane

e Consists of many independently folding domains

¢ Single-molecule mechanical unfolding experiments have
shown that one of the domains, Fny) often unfolds via a
semi-stable intermediate

e Previous simulations found intermediates, but of différen
kinds, only a few unfolding trajectories were analyzed

¢ Unfolding pathways and intermediates are relevant:
Fnlll1o has interaction sites buried within the folded
protein



Mechanical unfolding — simulations

We perform two types of mechanical unfolding simulations

¢ pulling at both ends of the molecule with a constant force
¢ pulling at one end with constant velocity, in each MC step
a pulling device (spring) is moved a microscopic step

Constant velocity simulations allow measurement of free
energy using the Jarzynski relation



Constant force unfolding — preliminary results

e Three distinct unfolding pathways, different intermedsat

e The intermediates differ slightly in extension

¢ One intermediate is more stable than the others

¢ Relative frequencies of intermediates are force-depdanden
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Constant velocity pulling — preliminary results
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e Same three unfolding pathways (and intermediates)
e Frequency of pathways speed-dependent

e Free energy from Jarzynski-relation seems to converge at
slow velocities
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Thank you for your attention

Model: A. Irback and S. Mohant{giophysical Journal 88, 1560-1569
(2005)

Aggregation: A. Irback and S. Mitternacl®roteins DOI:
10.1002/prot.21682 (2007)

Mechanical unfolding: work in progress

Software: http://cbbp.thep.lu.se/activities/profasi/



