

Escape transition of grafted polymer chains from a cylindrical tube

Hsiao-Ping Hsu

Institut für Physik, Johannes Gutenberg-Universität Mainz D-55099 Mainz, Staudinger Weg 7, Germany

with K. Binder (Mainz), A. M. Skvortsov (St. Petersburg) and L. Klushin (Beirut)

NTZ-Workshop CompPhys07 in Leipzig, Nov. 29 - Dec. 01, 2007

Motivations

- What is the order of the two-dimensional polymer escape transition? Hsu et. al., Phys. Rev. E 76, 021108 (2007).
 a weak first-order phase transition !
- The confinement/escape problem of polymer chains in cylindrical tubes of finite length

- Polymer translocation through pores in membrane
- DNA confined in artificial nanochannels

http://www.ks.uiuc.edu/ ale/

Two equivalent problems

Polymer chains escape from a tube

Dragging polymer chains into a tube

Theoretical predictions

Landau free energy approach

- Partition sum: $Z = \exp(-F) = \int dS \exp(-N\Phi(S))$
 - **F**: free energy
 - $\Phi(s)$: Landau free energy function

$$L o \infty, N o \infty, L/N$$
 finite of

• Imprisoned monomers $N_{
m imp}$: $\Delta_N = rac{N-N_{
m imp}}{N} pprox 0.22$

 $\Delta_N=0.055~(2D)$

• End-to-end distance $R_{||}$: $\Delta_{R_{||}} = rac{L-R_{||}}{L} pprox 0.247$ $\Delta_{R_{||}} = 0.0572~(2D)$

Simulations

Model: Self-avoiding random walks on a simple cubic lattice

Monomers are forbidden to sit on $\{1\leq x\leq L,\ y^2+z^2=D^2/4\}$ and $\{x=0,\ y^2+z^2=D^2/4\}$

 Algorithm: PERM with k-step Markovian anticipation Grassberger, Phys. Rev. E 56, 3682 (1997),

Hsu & Grassberger, Eur. Phys. J. B 36, 209 (2003))

Polymers confined in a " ∞ "-tuber and the state of the

- End-to-end distance $R_{||}(N,D)$: $R_{||}(N,D) = R_F \Psi_R(R_F/D),$ $R_F \sim N^{
 u}$: Flory radius
 - For $1 \ll D \ll R_F$ $R_{||} \sim 0.9 N D^{-1+1/
 u}$
- Free energy $F_{imp}(N, L, D)$: $Z(N, D) = Z_1(N)\Psi_z(R_F/D),$ $F_{imp} = -\ln\left(\frac{Z(N,D)}{Z_1(N)}\right)$
 - For $1 \ll D \ll R_F$ $F_{
 m imp} \sim 4.83 N D^{-1/
 u}$

Polymers confined in a tube of $L^{GUTENBERG}$

• End-to-end distance $R_{||}(N, L, D)$: $R_{||}/L$ vs. N/L 1.2

Some of the escape states are missing!

New strategy:

Algorithm: PERM

PERM=Pruned-enriched Rosenbluth method

Polymer chains are built like random walks by adding one monomer at each step

 $(P_{n,i}:$ the selection probability for the *i*th direction)

- Each sample configuration carries its own weight $W_n = \prod_{j=1}^n w_j = W_{n-1} w_n, w_j o w_j/P_{j,i}$
- Partition sum of a chain of length N: $\hat{Z}(N) = M^{-1} \sum_{\alpha=1}^{M} W_N(\alpha)$, M: total trial # of config.

Biased SAW

• Partition sum: $Z_b(N, L, D) = \sum_{walks} b^x$ $(= \frac{1}{M_b} \sum W_b(N, L, D))$ $b = \exp(\beta a F_s)$: stretching factor, F_s :stretching force, $\beta = 1/k_B T$, x: end-to-end distance $|| \vec{F}_s$

$$b = \left\{ egin{array}{ll} \geq 1 & , 0 < x \leq L \; , \; y^2 + z^2 \leq D^2/4 \; \; (ext{imprisoned}) \ 1 & , ext{otherwise (escaped)} \end{array}
ight.$$

For a biased SAW of N steps, the unbiased weight

$$W(N,L,D) = \left\{ egin{array}{ll} W_b(N,L,D)/b^{x_N-x_{N-1}} &, ext{ imprisoned} \ W_b(N,L,D)/b^L &, ext{ escaped} \end{array}
ight.$$

$| I | < R_{||} > /L$ vs. N/L

•
$$\Delta_{R_{||}} \approx 0.247$$
 (prediction)

• Transition point: $F_{\rm imp} = F_{\rm esc} \Rightarrow \left(\frac{N}{L}\right)_{tr} \sim 0.83 D^{-1+1/\nu}$

Landau free energy $\Phi(S)$

$$(Z = \exp(-F) = \int dS \exp(-N\Phi(S)))$$

Theoretical prediction:

$$\Phi(S) = \left\{egin{array}{ll} \Phi_{
m imp}(S) = D^{-1/
u}A(u^{-lpha}+Bu^{\delta}+C) &, S \leq L/N \ \Phi_{
m esc}(S) = rac{L}{N}rac{A}{D}\left(rac{u^{-lpha}+Bu^{\delta}+C)}{u}
ight) &, S \geq L/N \end{array}
ight.$$

 $\alpha = \frac{1}{3\nu - 1}, \, \delta = \frac{1}{1 - \nu},$ $N/L < (N/L)_{tr}$ $u=SD^{-1+1/
u}$, u=0.588 $N/L = (N/L)_{tr}$ A, B, C: coefficients $\Phi(s)$ $N/L > (N/L)_{tr}$ $A \approx 1.17$ $B \approx 0.80$ imprisoned escaped $C \approx 2.36$ S

MC simulations

• Landau free energy $\Phi(N, L, D, S)$

$$\Phi(N,L,H,s) = -\ln rac{1}{N} \left(rac{P(N,L,H,S)}{Z_1(N)}
ight)$$

 $Z_1(N)$: Partition sum of a one-end grafted chain

- Histogram of the order parameter S: $P(N,L,H,s) = \sum_{walks} \delta_{S,S'}$
- Partition sum of a partially confined chain: Z(N, L, H)

$$Z(N,L,H) = \sum_{s} P(N,L,H,s)$$

Combining data from different runs with bias **b**

Results (D = 16)

- $\Phi(N,L,D,S) + \Delta_L$ vs. S
- Theoretical predictions: $\Phi_{imp}(N, L, D, S)$, $\Phi_{esc}(N, L, D, S)$

Conclusions

- Theoretical predictions based on the Landau free energy approach are given and verified by MC simulations
- A new strategy is proposed for studying first-order transition

- Check the scaling laws : free energy F_{imp} , F_{esc} , end-to-end distance R_{imp}
- Determine the escape transition point: $(N/L)_{tr} \sim 0.83 D^{-1+1/
 u}$
- Further check by experiments