Star polymers and DNA in correlated environments

Viktoria Blavat'ska[•] Christian von Ferber^O Yurij Holovatch^{••}

[©] Applied Mathematics Research Centre, Coventry University Jagiellonian University, Krakow & Albert-Ludwig University, Freiburg

- University of Leipzig
- Johannes Kepler University, Linz
- Institute for Condensed Matter Physics, Ukranian Academy of Sciences, Lviv

Supported in part by

European Commission Research Directorate General Human Resources and Mobility

Models for disordered and correlated environments

A. Weak disorder, $c_{\text{perc}} < c \leq 1$

B. Strong disorder, $c = c_{\text{perc}}$

uncorrelated

long range correlated

universality unchanged

 $4-d=\epsilon$ $v^{saw} = 1/2 + \epsilon/16$

Kim '82

universality may change

 $4-a=\delta \leq \varepsilon/2$ $v = v^{saw} = 1/2 + \epsilon/16,$ $v = 1/2 + \epsilon/42,$ $\epsilon/2 \leq \delta \leq \epsilon$: $\nu = 1/2 + \delta/8$.

Weinrib, Halperin '83

V. Blavats'ka, CvF, Yu Holovatch '01

incipient percolation cluster

universality and upper crit. dim. change

 $6 - d = \varepsilon > 0$

Y. Meir, A. B. Harris'89,

CvF, V. Blavats'ka, R. Folk, Yu Holovatch'04

O. Stenull, H.-K. Janssen '07

s4/p05

Perturbation theory

Partition function Number of Configurations

Mapping to Lagrangean field theory

Continuous model (Edwards):

$$\frac{\mathcal{H}[r^{a}]}{k_{B}T} = \sum_{a}^{f} \int_{0}^{S_{a}} ds \left[\frac{dr^{a}(s)}{ds}\right]^{2} + \sum_{a,b} \frac{\boldsymbol{u}_{ab}}{2} \int d^{d}r \rho_{a}(r) \rho_{b}(r)$$

In the product of the set $r = 0$:
$$\rho_{a}(r) = \int_{0}^{S_{a}} \delta(r - r^{a}(s))$$

Star partition sum, chain ends at r = 0 :

$$\mathcal{Z}_{*f}\{S_a\} = \int D[r^a] \prod_a \delta(r^a(0)) \exp\{-\frac{\mathcal{H}[r^a]}{k_B T}\}$$

local operator product " ϕ^{f} "

 $r^a(S_a)$

a(0)

Laplace transform:

$$\widetilde{Z}_{*f}\{\mu_a\} = \int_0^\infty \prod_a \mathrm{d}S_a e^{-\mu_a S_a} Z_{*f}\{S_a\} = \int D[\phi_a] \prod_a \phi_a(0) \exp\{-\frac{\mathcal{L}[\phi_a]}{k_B T}\}$$

 ϕ^4 – Lagrangean:

$$\frac{\mathcal{L}\left[\phi_{a}\right]}{k_{B}T} = \sum_{a} \int \mathrm{d}^{d}r \{\frac{\mu_{a}}{2}\phi_{a}^{2}(r) + [\nabla\phi_{a}(r)]^{2}\} + \sum_{a,b} \frac{\mu_{ab}}{2} \int \mathrm{d}^{d}r \phi_{a}^{2}(r) \phi_{b}^{2}(r)$$

$$\phi_{a} \text{ is an } m = 0 \quad \text{component field}$$

s4/p17

Long-range correlated medium

- self-avoidance \mathcal{U}_0
- disorder

 $g(R) \sim R^{-a}$ $\widehat{g}(k) \sim v_0 + w_0 |k|^{a-d}$

n-replicated O(m)-symmetric *m*-vector $\vec{\phi}$ model

 $n, m \rightarrow 0$:

$$\begin{aligned} \mathcal{L}(\vec{\phi}) &= \sum_{k} \sum_{\alpha}^{n} \frac{1}{2} (\mu_{0}^{2} + k^{2}) (\vec{\phi}_{k}^{\alpha})^{2} + \frac{u_{0}}{4!} \sum_{\alpha}^{n} \sum_{\{k\}'} (\vec{\phi}_{k_{1}}^{\alpha} \vec{\phi}_{k_{2}}^{\alpha}) (\vec{\phi}_{k_{3}}^{\alpha} \vec{\phi}_{k_{4}}^{\alpha}) \\ &+ \frac{w_{0}}{4!} \sum_{\alpha\beta}^{n} \sum_{\{k\}''} |k|^{a-d} (\vec{\phi}_{k_{1}}^{\alpha} \vec{\phi}_{k_{2}}^{\alpha}) (\vec{\phi}_{k_{3}}^{\beta} \vec{\phi}_{k_{4}}^{\beta}) \end{aligned}$$

ϵ - δ expansion

starlr12

Fixed d, a loop expansion

starlr12a

Static separation

Partition function

$$Z_{*f}(N) \propto e^{\mu f N} N^{\gamma_f} - 1$$

Free energy

$$\mathcal{F} = -\mu f N - (\mathbf{\gamma}_f - 1)$$

Blavat'ska, vF, Holovatch, cond-mat (2006)

starlr13

Star-star interaction

Poland, Scheraga (1966)

 $c = \nu \eta_{\mathcal{G}} - \nu \eta_2 = d\nu + 2\nu \eta_3 - 3\nu \eta_2 = 2.11$ in 3D \rightarrow 1st order transition?

DNA denaturation in correlated disorder

- loop exponent $c = d\nu - 2(\gamma_3 - 1) + 3(\gamma_1 - 1)$
- c = 3(0.588) 2(0.05) + 3(0.15) = 2.11 no disorder(a=3) c = 3(0.68) - 2(-0.3) + 3(0.38) = 3.78 LR disorder (a = 2.3)

correlated disorder shifts the transition to 1st order.