Accurate prediction of protein structures -
How to find the exact ground state

Frank Dressel
S. Kobe, M. Schroeder
Biotec, TU Dresden
29. Nov. 2007
From DNA to proteins

➢ Information is stored in DNA
➢ DNA is transcribed in nucleus
➢ RNA is translated in ribosomes into a chain of amino acids
Protein folding

- Chain folds into stable 3d structure with a wide range of structures from disordered to ordered
Protein folding

➢ Is the 3d structure encoded in the sequence?
➢ Unfolding experiments shows fast refolding
➢ Different sequences folds into the same structure
➢ \(\sim 1000 \) different folds
Interaction scheme

➢ Define inside/outside with respect to C_β orientation
➢ Define an energy based on this scheme

\[e_i = -\frac{1}{\alpha_i} \ln \left(\frac{n_{\text{inside},i}}{n_{\text{outside},i}} \right) \]

\[e_{ij} = -\ln \left(\frac{n_{ij,\text{observed}}}{n_{ij,\text{expected}}} \right) \]

\(i : \text{Type of amino acid} \)
Interaction scheme

➢ Pairwise interaction scheme:

\[e_{kl} = \left(e_{i(k)j(l)} + e_{i(k)} + e_{j(l)} \right) \Theta (8 - |\vec{r}_k - \vec{r}_l|) \]

\(k, l : \text{Amino acids } \in \text{ the sequence} \)

Comparison of experimental (solid) and theoretical (dashed) solvation energies.
Coarse graining the structure

- Cut the query sequence
- Perform sequence similarity search against PDB
- Take real structures from hits in the PDB
- Cluster them in a canonical coordinate system
- Use these fragments to build the protein model

Build the protein model by consecutive fragments
Calculating the ground state -
Exact optimization

- Use branch-and-bound

\[E(\text{subset}_i) \leq E(\text{subset}_{i+1}) \]
\[\text{subset}_i \subseteq \text{subset}_{i+1} \]

- Give you the optimal solution and prove it
- Calculate all states below threshold
Model ground states vs. PDB

1E0N

1JL9

1E0L
How many proteins are in ground state?

- Prepare a set of small proteins from different Scop classes:
 - 150 for “Small proteins”
 - 18 for “All α”
 - 5 for “All β”
- Calculate the low lying energy landscape
- Search the ground states

<table>
<thead>
<tr>
<th>Small proteins</th>
<th>All α</th>
<th>All β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground state < 6.5 A</td>
<td>Ground state < 6.5 A</td>
<td>Ground state < 6.5 A</td>
</tr>
<tr>
<td>Structure with < 6.5 A</td>
<td>Structure with < 6.5 A</td>
<td>Structure with < 6.5 A</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
What are the reasons for “Non ground-state-ness”?

- Helices are in wrong orientation
- Other secondary structure elements are in wrong orientation
- Protein can not be modelled
- Native state ≠ Ground state

1JJS: Large structural changes upon ligand binding (Lin et al., 2001)
Discussion

➢ In most cases, the ground state corresponds to native state
➢ Nevertheless: There are some proteins (mostly in “Small proteins”), where native state doesn't correspond to ground state
➢ Protein should be able to perform structural changes
 ➢ Small energy barriers between native and non-native state
THANK YOU FOR YOUR ATTENTION