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Abstract

The set of dynamic symmetries of the scalar free Schrödinger equation in d space dimensions
gives a realization of the Schrödinger algebra that may be extended into a representation of the con-
formal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation
where the mass is not viewed as a constant, but as an additional coordinate. An analogous con-
struction also holds for the spin-1

2 Lévy-Leblond equation. An N = 2 supersymmetric extension of
these equations leads, respectively, to a ‘super-Schrödinger’ model and to the (3|2)-supersymmetric
model. Their dynamic supersymmetries form the Lie superalgebras osp(2|2)nsh(2|2) and osp(2|4),
respectively. The Schrödinger algebra and its supersymmetric counterparts are found to be the
largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras
that are systematically constructed in a Poisson algebra setting, including the Schrödinger-Neveu-
Schwarz algebra sns(N) with N supercharges.

Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras
of osp(2|4). If one includes both N = 2 supercharges and time-inversions, then the sum of the
scaling dimensions is restricted to a finite set of possible values.
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1 Introduction

Symmetries have always played a central rôle in mathematics and physics. For example, it is well-known
since the work of Lie (1881) that the free diffusion equation in one spatial dimension has a non-trivial
symmetry group. It was recognized much later that the same group also appears to be the maximal
dynamic invariance group of the free Schrödinger equation in d space dimensions, and it is therefore
referred to as the Schrödinger group [35]. Its Lie algebra is denoted by schd. In the case d = 1, one may
realize sch1 by the following differential operators

X−1 = −∂t , Y−1/2 = −∂r time and space translations

Y1/2 = −t∂r −Mr Galilei transformation

X0 = −t∂t −
1

2
r∂r −

x

2
dilatation

X1 = −t2∂t − tr∂r −
M
2

r2 − 2xt special transformation

M0 = −M phase shift (1.1)

Here, M is a (real or complex) number and x is the scaling dimension of the wave function φ on
which the generators of sch1 act. The Lie algebra sch1 realizes dynamical symmetries of the 1D free
Schrödinger/diffusion equation Sφ = (2M∂t − ∂2

r )φ = 0 only if x = 1/2.

In particular, sch1 is isomorphic to the semi-direct product sl2(R) n h1, where sl2(R) is spanned by
the three X-generators whereas the Heisenberg algebra in one space-dimension h1 is spanned by Y±1/2

and M0.

Schrödinger-invariance has been found in physically very different systems such as non-relativistic
field-theory [26, 16, 23], celestial mechanics [10], the Eulerian equations of motion of a viscous fluid
[17, 36] or the slow dynamics of statistical systems far from equilibrium [21, 38, 41], just to mention a
few. In this paper, we investigate the following two important features of Schrödinger-invariance in a
supersymmetric setting. The consideration of supersymmetries in relation with Schrödinger-invariance
may be motivated from the long-standing topic of supersymmetric quantum mechanics [8] and from
the application of Schrödinger-invariance to the long-time behaviour of systems undergoing ageing, e.g.
in the context of phase-ordering kinetics. Equations such as the Fokker-Planck or Kramers equations,
which are habitually used to describe non-equilibrium statistical systems, are naturally supersymmetric,
see [24, 42] and references therein.

1. First, there is a certain analogy between Schrödinger- and conformal invariance. This is
less surprising than it might appear at first sight since there is an embedding of the (complexified)
Schrödinger Lie algebra in d space dimensions into the conformal algebra in (d + 2) space dimensions,
schd ⊂ (confd+2)C [7, 20].3 This embedding comes out naturally when one thinks of the mass param-
eter M in the Schrödinger equation as an additional coordinate. Then a Laplace-transform of the
Schrödinger equation with respect to M yields a Laplace-like equation which is known to be invariant
under the conformal group.

2. Second, we recall the fact, observed by one of us long ago [18], that the six-dimensional Lie
algebra sch1 can be embedded into the following infinite-dimensional Lie algebra with the non-vanishing
commutators

3In the literature, the invariance under the generator of special transformations X1 is sometimes referred to as ‘con-
formal invariance’, but we stress that the embedding schd ⊂ (confd+2)C is considerably more general. In this paper,
conformal invariance always means invariance under the whole conformal algebra confd+2.
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[Xn, Xn′ ] = (n − n′)Xn+n′ +
c

12

(
n3 − n

)
δn,n′ , [Xn, Ym] =

(n

2
− m

)
Yn+m ,

[Xn,Mn′ ] = −n′Mn+n′ , [Ym, Ym′ ] = (m − m′)Mm+m′ . (1.2)

where n, n′ ∈ Z, m ∈ Z + 1
2
, and c is the central charge. It can be shown that no further non-trivial

central extension of this algebra is possible [18]. We shall call the algebra (1.2) the Schrödinger-Virasoro
algebra and denote it by sv. For c = 0, a differential-operator representation of the algebra sv is

Xn = −tn+1∂t −
n + 1

2
tnr∂r − (n + 1)

x

2
tn − n(n + 1)

4
Mtn−1r2

Ym = −tm+1/2∂r −
(

m +
1

2

)
tm−1/2rM

Mn = −Mtn (1.3)

where M is a parameter and x is again a scaling dimension. Extensions to higher space-dimensions
are straightforward, see [19]. Remarkably, there is a ‘no-go’-theorem forbidding any reasonable double
extension of the Schrödinger algebra both by the conformal algebra and by the Schrödinger-Virasoro
algebra [40].

The algebra sv can be further extended by considering the generators [19]

Xn = −tn+1∂t −
n + 1

2
tnr∂r − (n + 1)

x

2
tn − n(n + 1)

4
Mtn−1r2 − n3 − n

8
M′ tn−2r4

Ym = −tm+1/2∂r −
(

m +
1

2

)
Mtm−1/2r −

(
m2 − 1

4

)
M′ tm−3/2r3

Z(2)
n = −ntn−1r2 (1.4)

Z(1)
m = −2tm−1/2r

Z(0)
n = −2tn

where M and M′ are (real or complex) parameters4 and x is a scaling dimension. The non-vanishing
commutators of the generators (1.4) read

[Xn, Xn′ ] = (n − n′)Xn+n′ , [Xn, Ym] =
(n

2
− m

)
Yn+m ,

[Ym, Ym′ ] = (m − m′)

(
48M′ Z

(2)
m+m′ +

M
2

Z
(0)
m+m′

)

[
Xn, Z

(2)
n′

]
= −n′Z

(2)
n+n′ ,

[
Ym, Z(2)

n

]
= −nZ

(1)
n+m (1.5)

[
Xn, Z(1)

m

]
= −

(n

2
+ m

)
Z

(1)
n+m ,

[
Ym, Z

(1)
m′

]
= −Z

(0)
m+m′

[
Xn, Z

(0)
n′

]
= −n′Z

(0)
n+n′

and it can be shown that for c = 0, this is the maximal extension of sv through first-order differential
operators such that the time- and space- translations X−1, Y−1/2 and the dilatation X0 are unmodified
compared to (1.1) [19]. For M′ = 0, the algebra sv is recovered as a subalgebra.

Rather than proceeding from example to example, it would be valuable to have a systematic approach
for the construction of infinite-dimensional (supersymmetric) extensions of sch1.

4In [19], the notation B10 = M/2 and B20 = 12M′ was used.
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Generalizing the correspondence between Schrödinger- and conformal invariance, we shall in this
paper introduce a supersymmetric extension of the free Schrödinger equation in d = 1 space dimension
with two super-coordinates (which we call the super-Schrödinger model below), whose Lie symmetries
form a supersymmetric extension of the Schrödinger algebra that is isomorphic to a semi-direct product
osp(2|2) n sh(2|2) of an orthosymplectic Lie algebra by a super-Heisenberg Lie algebra. We relate
this model to a classical N = 2 supersymmetric model in (3 + 2) dimensions, giving at the same
time an explicit embedding of our ‘super-Schrödinger algebra’ into osp(2|4) . Note that supersymmetric
extensions of the Schrödinger algebra have been discussed several times in the past [2, 3, 4, 13, 11, 14, 15],
some of them in the context of supersymmetric quantum mechanics. Here, we consider the problem
from a field-theoretical perspective.

We shall also present a systematic construction of a family of infinite-dimensional supersymmetric
extensions of the Schrödinger algebra. Our main examples will be the Schrödinger-Neveu-Schwarz
algebras sns(N) with N supercharges. The N = 1 Neveu-Schwarz superalgebra [34, 25] is recovered as
a subalgebra of sns(1), while sns(0) is the Schrödinger-Virasoro algebra sv.

The link between the two parts is given by a realization of the infinite-dimensional Lie algebra sns(2)

providing an extension of the realization of osp(2|2)nsh(2|2) as Lie symmetries of the super-Schrödinger
model (see Proposition 4.3).

We begin in section 2 by recalling some useful facts about the Schrödinger-invariance of the scalar
free Schrödinger equation and then give a generalization to its spin-1

2
analogue, the Lévy-Leblond equa-

tion. By considering the ‘mass’ as an additional variable, we extend the spinor representation of the
Schrödinger algebra sch1 into a representation of conf3. As an application, we derive the Schrödinger-
covariant two-point spinorial correlation functions. In section 3, we combine the free Schrödinger and
Lévy-Leblond equations (together with a scalar auxiliary field) into a super-Schrödinger model, and
show, by using a superfield formalism in 3 + 2 dimensions, that this model has a kinematic supersym-
metry algebra with N = 2 supercharges. Including then time-inversions, we compute the full dynamical
symmetry algebra and prove that it is isomorphic to the Lie algebra of symmetries osp(2|2) n sh(2|2)
found in several mechanical systems with a finite number of particles. By treating the ‘mass’ as a coor-
dinate, we obtain a well-known supersymmetric model (see [12]) that we call the (3|2)-supersymmetric
model. Its dynamical symmetries form the Lie superalgebra osp(2|4). The derivation of these results is
greatly simplified through the correspondence with Poisson structures and the introduction of several
gradings which will be described in detail. In section 4, we use a Poisson algebra formalism to construct
for every N an infinite-dimensional supersymmetric extension with N supercharges of the Schrödinger
algebra that we call Schrödinger-Neveu-Schwarz algebra and denote by sns(N). At the same time, we
give an extension of the differential-operator representation of osp(2|4) into a differential-operator rep-
resentation of sns(2). We compute in section 5 the two-point correlation functions that are covariant
under osp(2|4) or under some of its subalgebras. Remarkably, in many instances, the requirement of
supersymmetric covariance is enough to allow only a finite number of possible quasiprimary superfields.
Our conclusions are given in section 6. In appendix A we present the details for the calculation of the
supersymmetric two-point functions, whereas in appendix B, we collect for easy reference the numerous
Lie superalgebras introduced in the paper and their differential-operator realization as Lie symmetries
of the (3|2)-supersymmetric model.
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Figure 1: Roots of the three-dimensional complexified conformal Lie algebra (conf3)C
∼= B2 and their relation

with the generators of the Schrödinger algebra sch1. The double circle in the centre denotes the Cartan
subalgebra h.

2 On the Dirac-Lévy-Leblond equation

Throughout this paper we shall use the following notation: [A,B]∓ := AB ∓BA stand for the commu-
tator and anticommutator, respectively. We shall often simply write [A,B] if it is clear which one should
be understood. Furthermore {A,B} := ∂A

∂q
∂B
∂p

− ∂A
∂p

∂B
∂q

denotes the Poisson bracket or supersymmetric
extensions thereof which will be introduced below. We shall use the Einstein summation convention
unless explicitly stated otherwise.

In this section we first recall some properties of the one-dimensional free Schrödinger equation before
considering a reduction to a system of first-order equations introduced by Lévy-Leblond [31].

Consider the free Schrödinger or diffusion equation

Sφ̃ = (2M∂t − ∂2
r )φ̃ = 0 (2.1)

in one space-dimension, where the Schrödinger operator may be expressed in terms of the generators
of sch1 as S := 2M0X−1 − Y 2

−1/2. That the Schrödinger algebra realized by (1.1) is indeed a dynamical

symmetry of the Schrödinger equation if x = 1/2 can be seen from the commutators

[S, X1] = −2tS − 2

(
x − 1

2

)
M0 , [S, X−1] =

[
S, Y− 1

2

]
= 0 (2.2)

while the symmetry with respect to the other generators follows from the Jacobi identities. In many
situations, it is useful to go over from the representation eq. (1.1) to another one obtained by formally
considering the ‘mass’ M as an additional variable such that φ̃ = φ̃M(t, r). As a general rule, we shall
denote in this article by ζ the variable conjugate to M via a Fourier-Laplace transformation, and the
corresponding wave function by the same letter but without the tilde, here φ = φ(ζ, t, r). In this way,
one may show that there is a complex embedding of the Schrödinger algebra into the conformal algebra,
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viz. (sch1)C ⊂ (conf3)C [20], whereas the representation (1.1) (after a Fourier-Laplace transform) may
be extended into the usual representation of conf3 as infinitesimal conformal transformations of R3 for
a certain choice of coordinates.5

We illustrate this for the one-dimensional case d = 1 in figure 1, where the root diagram for
(conf3)C

∼= B2 is shown. The identification with the generators of sch1 is clear, see eq. (1.1), and we
also give a name to the extra conformal generators. In particular, 〈N,X0〉 form a Cartan subalgebra
and the eigenvalue of ad N on any root vector is given by the coordinate along −e1.

6 Furthermore, the
conformal invariance of the Schrödinger equation follows from [S, V−] = 0 [20].

One of the main applications of the (super-)symmetries studied in this article will be the calculation
of covariant correlation functions and we now define this important concept precisely, generalizing a
basic concept of conformal field-theory [5].

Definition 1. Let L(H) be the set of linear operators on a Hilbert space H, let R : g → L(H) be
a representation of a (super) Lie algebra g and R(n) : g → L(H)⊗n be the tensor representation for
n-particle operators. If φ1, . . . , φn ∈ H are fields, then their n-point function 〈φ1 . . . φn〉 may be defined
by an averaging function Av : H⊗n → C such that Av (φ1 ⊗ . . .⊗ φn) = 〈φ1 . . . φn〉. Then one says that
the n-point function 〈φ1 · · ·φn〉 is g-covariant under the representation R, if for any generator X ∈ g

Av
(
R(n)(X )(φ1 ⊗ . . . φn)

)
= 〈(R(X )φ1)φ2 . . . φn〉 + . . . + 〈φ1 . . . φn−1(R(X )φn)〉 = 0 (2.3)

In this case, the fields φi are called g-quasiprimary with respect to R, or simply quasiprimary.

As a specific example, let us consider here n-point functions that are covariant under (conf3)C or
one of its Lie subalgebras, which for our purposes will be either sch1 or the parabolic subalgebra

s̃ch1 := CN n sch1 (2.4)

(see [27] for the definition of parabolic subalgebras). In the extension of the Fourier-Laplace transform
of the representation (1.1) to conf3, the generator N is given by

N = −t∂t + ζ∂ζ + ν (2.5)

with ν = 0 [20]. But any choice for the value of ν also gives a representation of s̃ch1, although it does

not extend to the whole conformal Lie algebra. So one may consider more generally s̃ch1-quasiprimary
fields characterized by a scaling exponent x and a N -exponent ν.

It will turn out later to be useful to work with the variable ζ conjugate to M. If we arrange for
M = −1

2
∂ζ through a Laplace transform, see eq. (2.11) below, it is easy to see that the sch1-covariant

two-point function under the representation (1.1) is given by [20]

〈φ1φ2〉 := 〈φ1(ζ1, t1, r1)φ2(ζ2, t2, r2)〉 = ψ0δx1,x2(t1 − t2)
−x1f

(
ζ1 − ζ2 +

1

4

(r1 − r2)
2

t1 − t2

)
(2.6)

where x1,2 are the scaling dimensions of the sch1-quasiprimary fields φ1,2, f is an undetermined scal-

ing function and ψ0 a normalization constant. If φ1,2 are s̃ch1-quasiprimary fields with N -exponents
ν1,2, then f(u) = u−x1−ν1−ν2 . If in addition ψ1,2 are conf3-quasiprimary, then f(u) = u−x1 and, after
an inverse Laplace transform, this two-point function becomes the well-known heat kernel 〈φ̃1φ̃2〉 =

5This apparently abstract extension becomes important for the explicit calculation of the two-time correlation function
in phase-ordering kinetics [22].

6For example, adN(Y 1

2

) = [N,Y 1

2

] = −Y 1

2

or adN(Y
−

1

2

) = [N,Y
−

1

2

] = 0.
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φ0δx1,x2t
−x1 exp(−r2/(2Mt)), together with the causality condition t > 0 [20]. The same form for

〈φ̃1φ̃2〉 also holds true for sch1-quasiprimary fields, since the function f in (2.6) simply gives, after the
Laplace transform, a mass-dependent normalization constant φ0.

We now turn to the Dirac-Lévy-Leblond equations. They were constructed by Lévy-Leblond [31] by
adapting to a non-relativistic setting Dirac’s square-root method for finding a relativistically covariant
partial differential equation of first order. Consider in d space dimensions a first-order vector wave
equation of the form

RΦ̃ :=

(
A

∂

∂t
+

d∑

i=1

Bi
∂

∂ri
+ MC

)
Φ̃ = 0 (2.7)

where A,Bi and C are matrices to be determined such that the square of the operator R is equal to

the free Schrödinger operator R2 !
= S = 2M∂t−

∑d
i=1(∂ri)2. It is easy to see that the matrices A,Bi, C

give a representation of a Clifford algebra (with an unconventional metric) in d+2 dimensions. Namely,
if one sets

Bj := i
√

2 Bj ; j = 1, . . . , d

Bd+1 := A +
1

2
C , Bd+2 := i

(
A − 1

2
C

)
(2.8)

then the condition on R is equivalent to [Bj,Bk]+ = 2δj,k for j, k = 1, . . . , d + 2.

We are interested in the case d = 1. Then the Clifford algebra generated by Bj, j = 1, 2, 3, has
exactly one irreducible representation up to equivalence, which is given for instance by

B1 = σ3 =

(
1 0
0 −1

)
, B2 = σ2 =

(
0 i
−i 0

)
, B3 = σ1 =

(
0 1
1 0

)
. (2.9)

Then the wave equation RΦ̃ = R
(

ψ̃

φ̃

)
= 0 becomes explicitly, after a rescaling r 7→

√
2 r

∂tψ̃ = ∂rφ̃ , 2Mφ̃ = ∂rψ̃ (2.10)

These are the Dirac-Lévy-Leblond equations in one space dimension.

Since the masses M are by physical convention real and positive, it is convenient to define their
conjugate ζ through a Laplace transform

ψ(ζ, t, r) =

∫ ∞

0

dM e−2Mζψ̃(M; t, r) (2.11)

and similarly for φ. Then eqs. (2.10) become

∂tψ = ∂rφ , ∂ζφ = −∂rψ. (2.12)

Actually, it is easy to see that these eqs. (2.12) are equivalent to the three-dimensional massless free
Dirac equation γµ∂µΦ = 0, where ∂µ = ∂/∂ξµ and ξµ with µ = 1, 2, 3 are the coordinates. If we set
t = 1

2
(ξ1 + iξ2), ζ = 1

2
(ξ1 − iξ2) and finally r = ξ3, and choose the representation γµ = σµ, then we

recover indeed eq. (2.12).
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The invariance of the free massless Dirac equation under the conformal group is well-known.7 The

generators of conf3 act as follows on the spinor field Φ =

(
ψ
φ

)
, (see again figure 1)

X−1 = −∂t , Y− 1
2

= −∂r , M0 =
1

2
∂ζ

V− = −r∂t + 2ζ∂r −
(

0 1
0 0

)

N = −t∂t + ζ∂ζ +
1

2

(
1 0
0 −1

)

Y 1
2

= −t∂r +
1

2
r∂ζ −

1

2

(
0 0
1 0

)

X0 = −t∂t −
1

2
r∂r −

1

2

(
x 0
0 x + 1

)
(2.13)

W = −1

2
r2∂t + 2ζ2∂ζ + 2ζr∂r +

(
2(x + 1)ζ −r

0 2xζ

)

V+ = −tr∂t − ζr∂ζ −
1

2
(r2 − 4ζt)∂r −

1

2

(
(2x + 1)r 2t

−2ζ (2x + 1)r

)

X1 = −t2∂t − tr∂r +
1

4
r2∂ζ −

(
xt 0
r/2 (x + 1)t

)

For solutions of (2.12), one has x = 1
2
. As in the case of the scalar representation (1.1), arbitrary values

of the scaling exponent x also give a representation of the conformal algebra.

There are three ‘translations’ (X−1, Y− 1
2
,M0), three ‘rotations’ (V−, N, Y 1

2
), one ‘dilatation’ (X0)

and three ‘inversions’ or special transformations (W,V+, X1). It is sometimes useful to work with the
generator D := 2X0−N (whose differential part is the Euler operator −t∂t−r∂r−ζ∂ζ) instead of either
X0 or N . We also see that the individual components ψ, φ of the spinor Φ have scaling dimensions
xψ = x and xφ = x + 1, respectively. If we write the Dirac operator as

D =
1

i
R =

(
∂r ∂ζ

∂t −∂r

)
(2.14)

then the Schrödinger- and also the full conformal invariance of the Dirac-Lévy-Leblond equation DΦ = 0
follows from the commutators

[D, X1] = −tD −
(

x − 1

2

) (
0 0
0 1

)

[D, X−1] =
[
D, Y− 1

2

]
= [D, V−] = 0 (2.15)

It is clear that dynamical symmetries of the Dirac-Lévy-Leblond equation are obtained only if x = 1
2
.

Since X1, X−1, Y− 1
2
, V− generate (conf3)C, as can be seen from the root structure represented in figure 1,

the symmetry under the remaining generators of (conf3)C follows from the Jacobi identities.

Let Φi =

(
ψi

φi

)
, i = 1, 2 be two quasiprimary spinors under the representation (2.13) of either

sch1, s̃ch1 or conf3, with scaling dimensions

(
xi

xi + 1

)
of the component fields. We now consider the

7The Schrödinger-invariance of a free non-relativistic particle of spin S is proven in [16].
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covariant two-point functions; from translation-invariance it is clear that these will only depend on
ζ = ζ1 − ζ2, t = t1 − t2 and r = r1 − r2.

Proposition 2.1. Suppose Φ1, Φ2 are quasiprimary spinors under the representation (2.13) of s̃ch1.
Then their two-point functions vanish unless x1 = x2 or x1 = x2 ± 1, in which case they read (φ0, ψ0

are normalization constants)

(i) if x1 = x2, then

〈ψ1ψ2〉 = ψ0t
(
4ζt + r2

)−x1−1

〈ψ1φ2〉 = 〈φ1ψ2〉 = −1

2
ψ0r

(
4ζt + r2

)−x1−1
(2.16)

〈φ1φ2〉 =
ψ0

4

r2

t

(
4ζt + r2

)−x1−1
+ φ0

1

t

(
4ζt + r2

)−x1

(ii) if x1 = x2 + 1, then

〈ψ1ψ2〉 = 〈φ1ψ2〉 = 0

〈ψ1φ2〉 = ψ0

(
4ζt + r2

)−x1 (2.17)

〈φ1φ2〉 = −ψ0

2

r

t

(
4ζt + r2

)−x1

The case x1 = x2 − 1 is obtained by exchanging Φ1 with Φ2.

For brevity, the arguments of the two-point functions in eqs. (2.16,2.17) were suppressed. Let us
emphasize that the scaling dimensions of the component fields with a standard Schrödinger form (2.6)
(〈ψ1ψ2〉 and 〈φ1φ2〉 in eq. (2.16), and 〈ψ1φ2〉 in eq. (2.17)) must agree, which is not the case for the
other two-point functions which are obtained from them by applying derivative operators.

On the other hand, the covariance under the whole conformal group implies the supplementary
constraint x1 = x2 (equality of the scaling exponents), and we have

Proposition 2.2. The non-vanishing two-point functions, (conf3)C-covariant under the representation
(2.13), of the fields ψ and φ are obtained from eq. (2.16) with x1 = x2 and the extra condition φ0 =
−ψ0/4, which gives

〈φ1φ2〉 = −ψ0ζ
(
4ζt + r2

)−x1−1
(2.18)

Proof: In proving these two propositions, we merely outline the main ideas since the calculations are
straightforward. We begin with Proposition 2.1. Given the obvious invariance under the translations,
we first consider the invariance under the special transformation X1 and use the form (2.13). With the
help of dilatation invariance (X0) and Galilei-invariance (Y 1

2
) this simplifies to

(x1 − x2)t〈ψ1ψ2〉 = 0 , (x1 − x2 − 1)t〈ψ1φ2〉 −
1

2
r〈ψ1ψ2〉 = 0 ,

(x1 − x2 + 1)t〈φ1ψ2〉 +
1

2
r〈ψ1ψ2〉 = 0 , (x1 − x2)t〈φ1φ2〉 +

1

2
r〈ψ1φ2〉 −

1

2
r〈φ1ψ2〉 = 0

Considering the first of these equations leads us to distinguish two cases: either (i) x1 = x2 or (ii)
〈ψ1ψ2〉 = 0.

In the first case, we get from the remaining three equations

〈ψ1φ2〉 = 〈φ1ψ2〉 = − r

2t
〈ψ1ψ2〉
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and the covariance under Y 1
2
, N and X0, respectively, leads to the following system of equations

(
−t

∂

∂r
+

r

2

∂

∂ζ

)
〈ψ1ψ2〉 = 0 ,

(
−t

∂

∂t
+ ζ

∂

∂ζ
+ 1

)
〈ψ1ψ2〉 = 0 ,

(
−t

∂

∂t
− r

2

∂

∂r
− x1

)
〈ψ1ψ2〉 = 0

with a unique solution (up to a multiplicative factor) given by the first line of eq. (2.16). Similarly,
covariance under the same three generators leads to a system of three linear inhomogeneous equations
for 〈φ1φ2〉 whose general solution is also given in eq. (2.16).

In the second case, the remaining conditions coming from X1 are

(x1 − x2 − 1)t〈ψ1φ2〉 = 0 , (x1 − x2 + 1)t〈φ1ψ2〉 = 0 ,

(x1 − x2)t〈φ1φ2〉 +
r

2
(〈ψ1φ2〉 − 〈φ1ψ2〉) = 0

and one of the conditions x1 = x2 ± 1 must hold true. Supposing that x1 = x2 + 1, we get 〈φ1φ2〉 =
−1

2
(r/t)〈ψ1φ2〉 and an analogous relation holds (with the first and second field exchanged) in the other

case. Again, covariance under Y 1
2
, N,X0 leads to a system of three linear equations for 〈ψ1φ2〉 whose

general solution in given in eq. (2.17).

To prove Proposition 2.2, it is now sufficient to verify covariance under the generator V−. Direct
calculation shows that eq. (2.16) is compatible with this condition only if φ0 = −ψ0/4. On the other
hand, compatibility with the second case eq. (2.17) requires that ψ0 = 0. ¤

Remark: If we come back to the original fields ψ̃, φ̃ by inverting the Laplace transform (2.11), the

s̃ch1-covariant two-point functions of eq. (2.16) take the form

〈ψ̃1ψ̃2〉 = ψ′
0

(M
t

)x1

exp

(
−M

2

r2

t

)

〈ψ̃1φ̃2〉 = 〈φ̃1ψ̃2〉 = −ψ′
0

r

2t

(M
t

)x1

exp

(
−M

2

r2

t

)
(2.19)

〈φ̃1φ̃2〉 =
ψ′

0

4

r2

t

(M
t

)x1

exp

(
−M

2

r2

t

)
+ φ′

0

(M
t

)x1−1

exp

(
−M

2

r2

t

)

where ψ′
0 = ψ0/(Γ(x1 + 1)2x1+1), φ′

0 = φ0/(Γ(x)2x1), and Γ(x) is the Gamma function.

Proposition 2.3. (i) Let f be a solution of the Laplace-transformed Schrödinger equation (∂ζ∂t+∂2
r )f =

0. Then Φ =

(
ψ
φ

)
:=

(
−∂ζf
∂rf

)
satisfies the Dirac-Lévy-Leblond equations (2.12).

(ii) Suppose that f1, f2 are s̃ch1-quasiprimary fields with scaling exponents x = x1 = x2 and N -exponents

ν1 = ν2 = −1
2
, and let Φi :=

(
−∂ζfi

∂rfi

)
. Then the covariant two-point function

〈f1f2〉 = t−x(ζ + r2/4t)1−x

implies a particular case of eq. (2.16), given by ψ0 = −x(x − 1)22x+2 and φ0 = (x − 1)22x−1.

Both assertions are easily checked by straightforward calculations.

Remark: In the case (i) of Proposition 2.3, the correspondence Φi =

(
ψi

φi

)
=

(
−∂ζfi

∂rfi

)
induces

from (1.1) a representation of the Schrödinger group on the fields φi, ψi in terms of integro-differential
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operators. It is at first sight not obvious that the two-point function of spinors that are quasiprimary
under (2.13) should be derived from 〈f1f2〉 in such a simple way.

3 Supersymmetry in three dimensions and supersymmetric

Schrödinger-invariance

3.1 From N = 2 supersymmetry to the super-Schrödinger equation

We begin by recalling the construction of super space-time [12, Lectures 3 & 4]. Take as n-dimensional
space-time Rn (or, more generally, any n-dimensional Lorentzian manifold). One has a quite general
construction of (non-supercommutative) superspace-time Rn|s, with s odd coordinates, as the expo-
nential of the Lie superalgebra V ⊕ S, where the even part V is an n-dimensional vector space, and
the s-dimensional odd part S is a spin representation of dimension s of Spin(n − 1, 1), provided with
non-trivial Lie super-brackets (f1, f2) ∈ S ×S 7→ [f1, f2]+ ∈ V which define a Spin(n− 1, 1)-equivariant
pairing Γ : Sym2(S) → V from symmetric two-tensors on S into V (see [12], Lecture 3). Super-
spacetime Rn|s can then be extended in a natural way into the exponential of the super-Poincaré
algebra (spin(n − 1, 1) n V ) ⊕ S, with the canonical action of spin(n − 1, 1) on V and on S.

Let us make this construction explicit in space-time dimension n = 3, which is the only case that
we shall study in this paper. Then the minimal spin representation is two-dimensional, so we consider
super-spacetime R3|2 with two odd coordinates θ = (θ1, θ2). We shall denote by Dθa , a = 1, 2, the
associated left-invariant derivatives, namely, the left-invariant super-vector fields that coincide with
∂θ1 , ∂θ2 when θ1, θ2 ≡ 0. Consider R2 with the coordinate vector fields ∂y1 , ∂y2 and the associated
symmetric two-tensors with components ∂yij , i, j = 1, 2. These form a three-dimensional vector space
with natural coordinates y = (y11, y12, y22) defined by

[
∂ycd , yab

]
−

:= δcaδdb + δcbδda (3.1)

Then define the map Γ introduced above to be

Γ(∂θa , ∂θb) := ∂yab (3.2)

Hence, one has the simple relation [Dθa , Dθb ]+ = ∂/∂yab for the odd generators of R3|2. So, by the
Campbell-Hausdorff formula,

Dθa = ∂θa + θb∂yab . (3.3)

In this particular case, spin(2, 1) ∼= sl(2, R). The usual action of gl(2, R) ⊃ spin(2, 1) on R2 is given by
the two-by-two matrices Eab such that Eab∂yc = −δac∂yb and extends naturally to the following action
on symmetric 2-tensors

Eab∂ycd = −δac∂ybd − δad∂ycb =
[
yaā∂yāb , ∂ycd

]
−

, (3.4)

so Eab is represented by the vector field on V ⊕ S

Eab = yaā∂yāb + θa∂θb (3.5)

One may verify that the adjoint action of Eab on the left-covariant derivatives is given by the usual
matrix action, namely, [Eab, Dθc ] = −δacDθb .
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Consider now a superfield Φ(y11, y12, y22; θ1, θ2): we introduce the Lagrangian density

L(Φ) =
1

2
εab(DθaΦ)∗(DθbΦ) (3.6)

where εab is the totally antisymmetric two-tensor defined by ε12 = −ε21 = 1, ε11 = ε22 = 0. It yields
the equations of motion

εabDθaDθbΦ = (Dθ1Dθ2 − Dθ2Dθ1)Φ = 0. (3.7)

This equation is invariant under even translations ∂yab , and under right-invariant super-derivatives

D̄θa = ∂θa − θb∂yab (3.8)

since these anticommute with the Dθa . Furthermore, the Lagrangian density is multiplied by det(g)
under the action of g ∈ Gl(2, R), hence all elements in gl(2, R) leave equation (3.7) invariant.

Note that the equations of motion are also invariant under the left-invariant super-derivatives Dθa

since these commute with the coordinate vector fields ∂ybc (this is true for flat space-time manifolds
only).

All these translational and rotational symmetries form by linear combinations a Lie superalgebra
that we shall call (in the absence of any better name) the ’super-Euclidean Lie algebra of R3|2’, and
denote by se(3|2), viz.

se(3|2) =
〈
∂yab , Dθa , D̄θa , Eab; a, b ∈ {1, 2}

〉
(3.9)

We shall show later that it can be included in a larger Lie super-algebra which is more interesting for
our purposes.

Let us look at this more closely by using proper coordinates. The vector fields ∂/∂yij are related to
the physical-coordinate vector fields by

∂

∂t
=

∂

∂y11
,

∂

∂r
=

∂

∂y12
,

∂

∂ζ
=

∂

∂y22
(3.10)

hence by eq. (3.1) we have t = 2y11, r = y12, ζ = 2y22. We set

Φ(ζ, t, r; θ1, θ2) = f(ζ, t, r) + θ1φ(ζ, t, r) + θ2ψ(ζ, t, r) + θ1θ2g(ζ, t, r). (3.11)

Then the left-invariant superderivatives read

Dθ1 = ∂θ1 + θ1∂t + θ2∂r, Dθ2 = ∂θ2 + θ1∂r + θ2∂ζ . (3.12)

The equations of motion (3.7) become

(
∂θ1∂θ2 + θ1θ2(∂ζ∂t − ∂2

r ) + θ1(∂θ2∂t − ∂θ1∂r) + θ2(∂θ2∂r − ∂θ1∂ζ)
)
Φ = 0 (3.13)

which yields the following system of equations in the coordinate fields:

g = 0

∂rφ = ∂tψ , ∂rψ = ∂ζφ

(∂2
r − ∂ζ∂t)f = 0. (3.14)

We shall call this system the (3|2)-supersymmetric model. From the two equations in the second line of
(3.14) we recover the Dirac-Lévy-Leblond equations (2.12) after the change of variables ζ 7→ −ζ.
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Table 1: Defining equations of motion of the supersymmetric models. The kinematic and dynamic symmetry
algebras (see the text for the definitions) are also listed.

model (3|2)-supersymmetric super-Schrödinger
g = 0 g̃ = 0

∂rφ = ∂tψ ∂rφ̃ = ∂tψ̃

∂rψ = ∂ζφ ∂rψ̃ = 2Mφ̃

(∂2
r − ∂ζ∂t)f = 0 (∂2

r − 2M∂t)f̃ = 0
kinematic algebra se(3|2) sgal

dynamic algebra s(2) ∼= osp(2|4) s̃(2) ∼= osp(2|2) n sh(2|2)

The equations (3.14) may be obtained in turn from the action

S =

∫
dζ dt dr dθ2 dθ1 L(Φ) =

∫
dζ dt dr L(f, φ, ψ, g) (3.15)

where
L(f, φ, ψ, g) = f ∗(∂ζ∂t − ∂2

r )f + φ∗(∂tψ − ∂rφ) + ψ∗(∂ζφ − ∂rψ) + g∗g. (3.16)

Now consider the field Φ = (f, ψ, φ, g) as the Laplace transform Φ =
∫

dM e2Mζ Φ̃M of the field Φ̃M

with respect to ζ, so that the derivative operator ∂ζ corresponds to the multiplication by twice the mass
coordinate 2M. The equations of motion (3.14) then read as follows:

g̃ = 0

∂rφ̃ = ∂tψ̃ , ∂rψ̃ = 2Mφ̃

(∂2
r − 2M∂t)f̃ = 0 (3.17)

We shall refer to equations (3.17) as the super-Schrödinger model.

In this context, g or g̃ can be interpreted as an auxiliary field, while (ψ, φ) is a spinor field satisfying
the Dirac equation in (2+1) dimensions (2.12) and its inverse Laplace transform (ψ̃, φ̃) satisfies the Dirac-
Lévy-Leblond equation in one space dimension, see (2.10), and f̃ is a solution of the free Schrödinger
equation in one space dimension.

Let us now study the kinematic Lie symmetries of the (3|2)-supersymmetric model (3.14) and of the
super-Schrödinger model (3.17). For convenience, we collect their definitions in table 1. By definition,
kinematic symmetries are (super)-translations and (super-)rotations, and also scale transformations,
that leave invariant the equations of motion. Generally speaking, the kinematic Lie symmetries of the
super-Schrödinger model contained in sgal correspond to those symmetries of the (3|2) supersymmetric
model such that the associated vector fields do not depend on the coordinate ζ, in other words which
leave the ‘mass’ invariant. Below, we shall also consider the so-called dynamic symmetries of the two
free-field models which arise when also inversions t 7→ −1/t are included, and form a strictly larger Lie
algebra. We anticipate on later results and already include the dynamic algebras in table 1.

Let us summarize the results obtained so far on the kinematic symmetries of the two supersymmetric
models.
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Proposition 3.1

1. The Lie algebra of kinematic Lie symmetries of the (3|2)-supersymmetric model (3.14) contains a
subalgebra which is isomorphic to se(3|2). The Lie algebra se(3|2) has dimension 11, and a basis
of se(3|2) in its realization as Lie symmetries is given by the following generators. There are the
three even translations

X−1 , Y− 1
2

, M0

the four odd translations

G1
− 1

2
= −1

2
(Dθ1 + D̄θ1) , G2

− 1
2

= −1

2
(Dθ1 − D̄θ1) , Ȳ 1

0 = −1

2
(Dθ2 + D̄θ2) , Ȳ 2

0 = −1

2
(Dθ2 − D̄θ2)

and the four generators in gl(2, R)

Y 1
2

= −1

2
E12 , X0 = −1

2
E11 −

x

2
, D = −1

2
(E11 + E22) − x , V− = −1

2
E21

An explicit realization in terms of differential operators is

X−1 = −∂t , Y− 1
2

= −∂r , M0 = −1

2
∂ζ

G1
− 1

2
= −∂θ1 , G2

− 1
2

= −θ1∂t − θ2∂r

Ȳ 1
0 = −∂θ2 , Ȳ 2

0 = −θ1∂r − θ2∂ζ

Y 1
2

= −t∂r −
1

2
r∂ζ −

1

2
θ1∂θ2 (3.18)

X0 = −t∂t −
1

2
(r∂r + θ1∂θ1) − x

2

D = −t∂t − r∂r − ζ∂ζ −
1

2
(θ1∂θ1 + θ2∂θ2) − x

V− = −ζ∂r −
1

2
r∂t −

1

2
θ2∂θ1 .

Here a scaling dimension x of the superfield Φ has been added such that for x = 1/2 the generators
X0 and D (which correspond to the action of non trace-free elements of gl(2, R)) leave invariant
the Lagrangian density. By changing the value of x one finds another realization of se(3|2).

2. The ‘super-galilean’ Lie subalgebra sgal ⊂ se(3|2) of symmetries of the super-Schrödinger model
(3.17) is 9-dimensional. Explicitly

sgal =
〈
X−1,0, Y± 1

2
,M0, G

1,2

− 1
2

, Ȳ 1,2
0

〉
(3.19)

We stress the strong asymmetry between the two odd coordinates θ1,2 as they appear in the dilatation
generator X0. This is a consequence of our identification X0 = −1

2
E11 − 1

2
x, which is dictated by the

requirement that the system exhibit a non-relativistic behaviour with a dynamic exponent z = 2. As
we shall show in section 5, this choice will have important consequences for the calculation of covariant
two-point functions. In comparison, in relativistic systems with an extended (N = 2) supersymmetry
(see e.g. [9, 33, 37]), one needs a dynamic exponent z = 1. In our notation, the generator D would
then be identified as the generator of dilatations, leading to a complete symmetry between θ1 and θ2.

The supersymmetries of the free non-relativistic particle with a fixed mass have been discussed by
Beckers et al. long ago [2, 4] and, as we shall recall in subsection 3.3, sgal is a subalgebra of their
dynamical algebra osp(2|2) n sh(2|2).
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Let us give the Lie brackets of these generators for convenience, and also for later use. The three
generators (X−1, Y− 1

2
,M0) commute with all translations, even or odd. The commutators of the odd

translations yield four non-trivial relations:

[G1
− 1

2
, G2

− 1
2
]+ = −X−1 , [Ȳ 1

0 , Ȳ 2
0 ]+ = −2M0

[G1
− 1

2
, Ȳ 2

0 ]+ = [G2
− 1

2
, Ȳ 1

0 ]+ = −Y− 1
2
. (3.20)

The rotations act on left- or right-covariant odd derivatives by the same formula

[Eab, Dθc ] = −δacDθb , [Eab, D̄θc ] = −δacD̄θb , (3.21)

which gives in our basis

[X0, G
1,2

− 1
2

] =
1

2
G1,2

− 1
2

, [X0, Ȳ
1,2
0 ] = 0

[Y 1
2
, G1,2

− 1
2

] =
1

2
Ȳ 1,2

0 , [Y 1
2
, Ȳ 1,2

0 ] = 0

[V−, G1,2

− 1
2

] = 0 , [V−, Ȳ 1,2
0 ] =

1

2
G1,2

− 1
2

. (3.22)

Finally, the commutators of elements in gl(2, R) may be computed by using the usual bracket of matrices,
and brackets between elements in gl(2, R) and even translations are obvious.

3.2 Dynamic symmetries of the super-Schrödinger model

Let us consider the symmetries of the super-Schrödinger model, starting from the 9-dimensional Lie
algebra of symmetries sgal that was introduced in Proposition 3.1. This Lie algebra may be enlarged
by adding the generator

N0 = −θ1∂θ1 − θ2∂θ2 + x (3.23)

(Euler operator on odd coordinates), together with three special transformations X1, G
1,2
1
2

that will be

defined shortly. First notice that the operators

S := (2M∂t − ∂2
r ) , S ′′ := ∂θ1∂θ2

S ′ := 2M∂θ1 − ∂θ2∂r , S̄ ′ := ∂θ1∂r − ∂θ2∂t (3.24)

cancel on solutions of the equations of motion. So

X1 := − 1

2M(Y 2
1
2

+ t2S + tθ1S ′) = −t2∂t − t(r∂r + θ1∂θ1) − xt − M
2

r2 − 1

2
rθ1∂θ2 (3.25)

is also a symmetry of (3.17), extending the special Schrödinger transformation introduced in (1.1). One
obtains two more generators by straightforward computations, namely

G1
1
2

:= [X1, G
1
− 1

2
] = −t∂θ1 − 1

2
r∂θ2

G2
1
2

:= [X1, G
2
− 1

2
] = −t(θ1∂t + θ2∂r) −

1

2
θ1r∂r − xθ1 −Mrθ2 +

1

2
θ1θ2∂θ2 . (3.26)

Proposition 3.2. The vector space generated by sgal introduced in Proposition 3.1, together with N0

and the three special transformations X1, G
1,2
1
2

, closes into a 13-dimensional Lie superalgebra. We shall

call this Lie algebra the (N = 2)-super-Schrödinger algebra and denote it by s̃(2). Explicitly,

s̃(2) =
〈
X±1,0, G

1,2
±1/2, Y±1/2, Ȳ

1,2
0 ,M0, N0

〉
(3.27)
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and the generators are listed in eqs. (3.18,3.23,3.25,3.26). See also appendix B.

Proof. One may check very easily the following formulas (note that the correcting terms of the type
function times D, where D = S,S ′, S̄ ′ or S ′′, are here for definiteness but yield 0 modulo the equations of
motion when commuted against elements of se(3|2), so they can be dismissed altogether when computing
brackets)

M0 = [Y 1
2
, Y− 1

2
]

X−1 = − 1

2MY 2
− 1

2
− 1

2MS

X0 = − 1

4M(Y− 1
2
Y 1

2
+ Y 1

2
Y− 1

2
) − t

2MS − θ1

4MS ′

G1
− 1

2
=

1

2M Ȳ 1
0 Y− 1

2
− 1

2MS ′

G2
− 1

2
=

1

2M Ȳ 2
0 Y− 1

2
− θ1

2MS

G1
1
2

=
1

2M Ȳ 1
0 Y 1

2
− t

2MS ′

G2
1
2

=
1

2M Ȳ 2
0 Y 1

2
− tθ1

2MS

N0 = − 1

4M(Ȳ 2
0 Ȳ 1

0 − Ȳ 1
0 Ȳ 2

0 ) − θ1

2MS ′.

So it takes only a short time to compute the adjoint action of G1,2
1
2

on se(3|2). On the even translations

we have

[G1,2
1
2

, X−1] = G1,2

− 1
2

, [G1,2
1
2

, Y− 1
2
] =

1

2
Ȳ 1,2

0 , [G1,2
1
2

,M0] = 0.

By commuting the G-generators we find

[G1,2
1
2

, G1,2

− 1
2

]+ = 0 , [G1
1
2
, G2

− 1
2
]+ = −1

2
N0 − X0 , [G2

1
2
, G1

− 1
2
]+ =

1

2
N0 − X0.

The action on the odd translations is given by

[G1,2
1
2

, Ȳ 1,2
0 ]+ = 0 , [G1,2

1
2

, Ȳ 2,1
0 ]+ = −Y 1

2
.

Finally,

[G1,2
1
2

, Y 1
2
] = 0 , [G1,2

1
2

, X0] =
1

2
G1,2

1
2

.

The generator N0 acts diagonally on the generators of se(3|2) : the eigenvalue of ad N0 on a generator
without upper index is 0, while it is +1 (resp. −1) on generators with upper index 1 (resp. 2). Note
that this is also true for the action of N0 on G1,2

1
2

.

The proof may now be finished by verifying that [Gi
1
2

, Gi
1
2

]+ = 0 (for both i = 1, 2), X1 = −[G1
1
2

, G2
1
2

]+

and [X1, G
1,2
1
2

] = 0. ¤

Remark: In order to prove the invariance of the equations of motion under s̃(2) it is actually enough
to prove the invariance under Y± 1

2
and Ȳ 1,2

0 since all other generators are given (modulo the equations

of motion) as quadratic expressions in these four generators.
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3.3 Some physical applications

We now briefly recall some earlier results on supersymmetric non-relativistic systems with a dynamic
supersymmetry algebra which contains osp(2|2).

Beckers et al. [2, 3, 4] studied the supersymmetric non-relativistic quantum mechanics in one spatial
dimension and derived the dynamical Lie superalgebras for any given superpotential W . The largest
superalgebras are found for the free particle, the free fall or the harmonic oscillator, where the dynamic
algebra is [4]

s̃(2) ∼= osp(2|2) n sh(2|2) (3.28)

where sh(2|2) is the Heisenberg super-algebra. We explicitly list the correspondence for the harmonic
oscillator with total Hamiltonian, see [2]

H = HB + HF =
1

2

(
p2 +

1

4
x2 +

1

2
σ3

)
(3.29)

The osp(2|2)-subalgebras of symmetries of our (3|2)-supersymmetric model and of the harmonic oscil-
lator in the notation of [2] may be identified by setting

HB = X0 , HF =
1

2
N0 , C± = ±iX∓1 , Q+ = G1

1
2

, Q− = −G2
− 1

2
, S+ = G1

− 1
2

, S− = −G2
1
2

(3.30)
while the identification of the symmetries in sh(2|2) of both models is given by

P± = Y∓ 1
2

, T± =
i√
2
Ȳ 1,2

0 , I = −M0 (3.31)

We remark that the total Hamiltonian corresponds to H = X0 + 1
2
N0 in our notation.

Duval and Horvathy [11] systematically constructed supersymmetric extensions with N supercharges
of the Schrödinger algebra schd as subalgebras of the extended affine orthosymplectic superalgebras. In
general, there is only one ‘standard’ possible type of such extensions, but in two space-dimensions, there
is a further ‘exotic’ superalgebra with a different structure. Relationships with Poisson algebras (see
below) are also discussed. While the kind of supersymmetries discussed above [2, 4] belong to the first
type, the ‘exotic’ type arises for example in Chern-Simons matter systems, whose N = 2 supersymmetry
was first described by Leblanc et al. [29].8 In [11], the supersymmetries of a scalar particle in a Dirac
monopole and of a magnetic vortex are also discussed.

The uniqueness of osp(2|2)-supersymmetry constructions has been addressed by Ghosh [15]. Indeed,
the generators of the osp(2|2) algebra can be represented in two distinct ways in terms of the coordinates
of the super-Calogero model. This leads to two distinct types of superhamiltonians, which in the simplest
case of N free superoscillators read [15]

H± =
1

4

N∑

i=1

[(
p2

i + x2
i

)
±

(
ψ†

i ψi − ψiψ
†
i

)]
(3.32)

Ĥ± =
1

4

N∑

i=1

(
p2

i + x2
i

)
± γ5

4

[
N − i

N∑

i,j=1

(
ψ†

i ψ
†
j + ψiψj + ψ†

i ψj − ψ†
jψi

)
Lij

]
(3.33)

8In non-commutative space-time, extended supersymmetries still persist, but scale- and Galilei-invariance are broken
[32].
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where xi and pi are bosonic coordinates and momenta, Lij = xipj − xjpi are angular momenta, the ψi

are fermionic variables satisfying [ψi, ψ
†
j ]+ = δij and the operator γ5 anticommutes with the ψi. The

Hamiltonian H± in eq. (3.32) is identical to the one discussed in [2, 4, 11]. Further examples discussed
in [15] include superconformal quantum mechanics and Calogero models but will not be detailed here.
Dynamical osp(2|2)-supersymmetries also occur in the d-dimensional Calogero-Marchioro model [14].

Finally, we mention that the SU(2)0 Wess-Zumino-Witten model has a hidden osp(2|2)−2 symmetry,
with a relationship to logarithmic conformal field-theories [28].

3.4 Dynamic symmetries of the (3|2)-supersymmetric model

So far, we have considered the mass M as fixed. Following what has been done for the simple Schrödinger
equation, we now relax this condition and ask what happens if M is treated as a variable [21]. We
then add the generators D and V− to s̃(2) which generates, through commutation with X1 and G1,2

1
2

, the

following new generators

V+ = 4[X1, V−] = −2tr∂t − 2ζr∂ζ − (r2 + 4ζt)∂r − r(θ1∂θ1 + θ2∂θ2) − 2tθ2∂θ1 − 2ζθ1∂θ2 − 2xr

W = [V+, V−] = −2ζ2∂ζ − 2ζ(r∂r + θ2∂θ2) − r2

2
∂t − rθ2∂θ1 − 2xζ

Z̄1
0 = [G1

1
2
, V−] = −1

2

(
ζ∂θ2 +

1

2
r∂θ1

)
(3.34)

Z̄2
0 = [G2

1
2
, V−] = −1

2

(
ζ(θ2∂ζ + θ1∂r) +

1

2
θ2r∂r +

1

2
rθ1∂t +

1

2
θ1θ2∂θ1 + xθ2

)
.

Proposition 3.3. The 19-dimensional vector space

s(2) =
〈
X±1,0, Y± 1

2
,M0, D,N0, G

1,2

± 1
2

, Ȳ 1,2
0 , V±,W, Z̄1,2

0

〉
(3.35)

closes as a Lie superalgebra and leaves invariant the equations of motion (3.14) of the (3|2)-supersymmetric
model.

We shall prove this in a simple way in subsection 3.6, by establishing a correspondence between
s(2) and a Lie subalgebra of a Poisson algebra. This will also show that s(2) is isomorphic to the Lie
superalgebra osp(2|4) - hence one may in the end abandon the notation s(2) altogether. The root
diagramme of osp(2|4) is shown in figure 2 and the correspondence of the roots with the generators of
s(2) is made explicit.

3.5 First correspondence with Poisson structures: the case of

s̃(2) ∼= osp(2|2) n sh(2|2) or the super-Schrödinger model

We shall give in this subsection a much simpler-looking presentation of s̃(2) by embedding it into the
Poisson algebra of superfunctions on a supermanifold, the Lie bracket of s̃(2) corresponding to the
Poisson bracket of the superfunctions. In figure 3a, we show how s̃(2) sits inside s(2) ∼= osp(2|4). For
comparison, we display in figure 3b the even subalgebra (conf3)C and in figure 3c the superalgebra
se(3|2). We see that both CD ⊕ s̃(2) and CN0 ⊕ se(3|2) are maximal Lie subalgebras of osp(2|4).

We first need some definitions.
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1

0

__

V

W

+−
Z

G XG
1,21,2

X−1

V

Y0 1/2

__ 1,2

1,2

YY

−1/2

−1/2

M 0

 0

f
1

f
2

1/2 0
 X       D, N

Figure 2: Root vectors of the complexified Lie superalgebra s(2) ∼= osp(2|4). The double circles indicate the
presence of two generators corresponding to opoosite values of the root projection along α, while the triple
circle in the centre corresponds to the Cartan subalgebra h (see proposition 3.5).

(a) (b) (c)

Figure 3: Root vectors of several Lie subalgebras of osp(2|4), arranged in the same way as in figure 2. The
full dots and circles give the generators in the respective subalgebra whereas the open dots and broken circles
merely stand for the remaining generators of osp(2|4). Note that in each case only two generators of the Cartan
subalgebra h are retained. The subalgebras are (a) s̃(2), (b) (conf3)C and (c) se(3|2).
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Definition 2. A commutative associative algebra A is a Poisson algebra if there exists a Lie bracket
{ , } : A×A → A (called Poisson bracket) which is compatible with the associative product f, g 7→ fg,
that is to say, such that the so-called Leibniz identity holds true

{fg, h} = f{g, h} + g{f, h}, ∀f, g, h ∈ A. (3.36)

This definition is naturally superizable and leads to the notion of a super-Poisson algebra. Standard
examples are Poisson or super-Poisson algebras of smooth functions on supermanifolds.

In this and the following subparagraphs, we shall consider a Poisson algebra, denoted P(2m|N), of
functions on the (2m|N)-supertorus, where m = 1, 2 and N = 0, 1, 2. As an associative algebra, it may
be written as the tensor product

P(2m|N) = P(2m|0) ⊗ Λ(RN) (3.37)

where Λ(RN) is the Grassmann algebra in the anticommuting variables θ1, . . . , θN , and P(2m|0) is the
associative algebra generated by the functions (qi, q

−1
i , pi, p

−1
i ), i = 1, . . . ,m, corresponding to finite

Fourier series. (Note that the Poisson algebra of smooth functions on the (2|N)-supertorus is a kind of
completion of P(2|N).)

Definition 3. We denote by δ the graduation on P(2m|N) defined by setting δ(f) = k, with k =
0, 1, . . . , N , for the monomials f(q, p, θ) = f0(q, p)θi1 . . . θik .

The Poisson bracket is defined to be

{f, g} =
m∑

i=1

∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

− (−1)δ(f)

N∑

i,j=1

ηi j ∂f

∂θi

∂g

∂θj
, (3.38)

where ηij is a non-degenerate symmetric two-tensor. Equivalently (by the Leibniz identity), it may be
defined through the relations

{qi, pj} = δi,j, {qi, θ
j} = 0, {pi, θ

j} = 0, {θi, θj} = ηij. (3.39)

We warn the reader who is not familiar with Poisson structures in a supersymmetric setting against
the familiar idea that the Poisson bracket of two functions should be obtained in a more or less straight-
forward way from their products. One has for instance in the case N = 1

(θ1)2 = 0, {θ1, θ1} = η11 6= 0

which might look a little confusing at first.

It is a well-known fact that the Schrödinger Lie algebra sch1 generated by X±1,0, Y± 1
2
,M0 is isomor-

phic to the Lie algebra of polynomials in (q, p) = (q1, p1) with degree ≤ 2: an explicit isomorphism is
given by

X−1 →
1

2
q2 , X0 → −1

2
qp , X1 →

1

2
p2 , Y− 1

2
→ q , Y 1

2
→ −p , M0 → 1. (3.40)

In particular, the Lie subalgebra 〈X−1, X0, X1〉 of quadratic polynomials in P(2|0) is isomorphic to the
Lie algebra sp(2, R) of linear infinitesimal canonical transformations of R2, which is a mere reformulation
of the canonical isomorphism sl(2, R) ∼= sp(2, R) (see subsection 3.6 for an extension of this result).

We now give a natural extension of this isomorphism to a supersymmetric setting. In what follows
we take m = 1, N = 2 and {θ1, θ1} = {θ2, θ2} = 0, {θ1, θ2} = 2.
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Definition 4 We denote by P(2|2)
≤2 ⊂ P(2|2) the Lie algebra of superfunctions that are polynomials in

(p, q, θ1, θ2) of degree ≤ 2.

Proposition 3.4. One has an isomorphism from s̃(2) to the Lie algebra P(2|2)
≤2 given explicitly as

X−1 →
1

2
q2 , X0 → −1

2
qp , X1 →

1

2
p2 , Y− 1

2
→ q , Y 1

2
→ −p , M0 → 1

N0 → −1

2
θ1θ2

Ȳ 1
0 → −θ1 , Ȳ 2

0 → θ2 (3.41)

G1
− 1

2
→ −1

2
qθ1 , G2

− 1
2
→ 1

2
qθ2

G1
1
2
→ 1

2
pθ1 , G2

1
2
→ −1

2
pθ2.

Remark : An equivalent statement of this result and its extension to higher spatial dimensions was
given in [11], eq. (4.10). This Lie isomorphism allows a rapid computation of Lie brackets in s̃(2).

Proof. The subalgebra of P(2|2)
≤2 made up of the monomials of degree 0 in p decomposes as a four-

dimensional commutative algebra 〈q2, q, 1, θ1θ2〉 (for the even part), plus four odd generators θi, qθi,
i = 1, 2. One may easily check the identification with the 3 even translations and the ‘super-Euler
operator’ N0, plus the 4 odd translations of se(3|2), see figure 2.

Then the two allowed rotations, X0 and Y 1
2
, form together with the translations a nine-dimensional

algebra that is also easily checked to be isomorphic to its image in P(2|2)
≤2 .

Finally, one sees immediately that the quadratic expressions (appearing just before Proposition 3.2

and inside its proof) that give X1, G
1,2
1
2

in terms of Y, Ȳ also hold in the associative algebra P(2|2)
≤2 with

the suggested identification (actually, this is also true for the generators N0, X−1, X0, G
1,2

− 1
2

, so one may

still reduce the number of verifications.) ¤

Let us finish this paragraph by coming back to the original N = 2 supersymmetry algebra (see
subsection 3.1). Suppose we want to consider only left-invariant odd translations Dθ1 = −G1

− 1
2

− G2
− 1

2

and Dθ2 = −Ȳ 1
0 − Ȳ 2

0 . It is then natural to consider the vector space

s̃(1) := 〈X−1, X0, X1, Y− 1
2
, Y 1

2
,M0, G

1
− 1

2
+ G2

− 1
2
, G1

1
2

+ G2
1
2
, Ȳ 1

0 + Ȳ 2
0 〉 (3.42)

and to ask whether this is a Lie subalgebra of s̃(2). The answer is yes9 and this is best proved by using
the Poisson algebra formulation. Since restricting to this subalgebra amounts to considering functions
that depend only on p, q and θ̃ := (θ1 − θ2)/(2i), with (θ̃)2 = 0 and {θ̃, θ̃} = 1, s̃(1) can be seen as
the Lie algebra of polynomials of degree ≤ 2 in P(2|1): it sits inside P(2|1) just in the same way as s̃(2)

sits inside P(2|2). Of course, the conjugate algebra obtained by taking the same linear combinations,
but with a minus sign instead (that is, generated by X±1,0, Y± 1

2
, G1

1
2

− G2
1
2

and the right-invariant odd

translations D̄θ1 = G2
− 1

2

− G1
− 1

2

and D̄θ2 = Ȳ 2
0 − Ȳ 1

0 ) is isomorphic to s̃(1). The commutation relations

of s̃(1) are again illustrated in figure 3a, where the four double circles of a pair of generators should be
replaced by a single generator. We shall consider this algebra once again in section 5.

9An isomorphic Lie superalgebra was first constructed by Gauntlett et al. [13].
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3.6 Second correspondence with Poisson structures: the case of osp(2|4),
or the (3|2)-supersymmetric model

We shall prove in this subsection Proposition 3.3 by giving an embedding of the vector space s(2) into
a Poisson algebra, from which the fact that s(2) closes as a Lie algebra becomes self-evident.

Let us first recall the definition of the orthosymplectic superalgebras.

Definition 5. Let n,m = 1, 2, . . . The Lie superalgebra osp(n|2m) is the set of linear vector fields in
the coordinates x1, . . . , x2m, θ1, . . . , θn preserving the 2-form

∑m
i=1 dxi ∧ dxm+i +

∑n
j=1(dθi)2.

In the following proposition, we recall the folklore result which states that the Lie superalgebra
osp(2|2m) may be embedded into a super-Poisson algebra of functions on the (2m|2)-supertorus, and
detail the root structure in this very convenient embedding.

Definition 6. We denote by P(2m|2)
(2) the Lie subalgebra of quadratic polynomials in the super-Poisson

algebra P(2m|2) on the (2m|2)-supertorus.

Proposition 3.5. Equip the super-Poisson algebra P(2m|2) with the super-Poisson bracket {qi, pj} =

δi,j, {θ1, θ2} = 2, and consider its Lie subalgebra P(2m|2)
(2) ⊂ P(2m|2). Then

1. The Lie algebra P(2m|2)
(2) is isomorphic to osp(2|2m).

2. Using this isomorphism, a Cartan subalgebra of osp(2|2m) is given by piqi (i = 1, . . . , 2m) and
θ1θ2. Let (f1, . . . , f2m, α) be the dual basis. Then the root-space decomposition is given by

osp(2|2m) = osp(2|2m)0 ⊕ osp(2|2m)fi−fj
⊕ osp(2|2m)±(fi+fj) (3.43)

⊕ osp(2|2m)±2fi
⊕ osp(2|2m)±fi+2αosp(2|2m)±fi−2α (i 6= j)

Except osp(2|2m)0 which is equal to the Cartan subalgebra, all other root-spaces are one-dimensional,
and

osp(2|2m)fi−fj
= 〈piqj〉 , osp(2|2m)fi+fj

= 〈pipj〉 , osp(2|2m)−(fi+fj) = 〈qiqj〉
osp(2|2m)2fi

= 〈p2
i 〉 , osp(2|2m)−2fi

= 〈q2
i 〉

osp(2|2m)fi+2α = 〈piθ
1〉 , osp(2|2m)−fi+2α = 〈qiθ

1〉
osp(2|2m)fi−2α = 〈piθ

2〉 , osp(2|2m)−fi−2α = 〈qiθ
2〉. (3.44)

Proof. Straightforward. ¤

The root structure is illustrated in figure 2 in the case m = 2. We may now finally state the last
ingredient for proving Proposition 3.3.

Proposition 3.6.

1. The linear application s̃(2) → osp(2|4) defined on generators by

X−1 → 1

2
q2
1 , X0 → −1

2
q1p1 , X1 →

1

2
p2

1 , Y− 1
2
→ q1q2 , Y 1

2
→ −p1q2 , M0 → q2

2

N0 → 1

2
θ1θ2

Ȳ 1
0 → −q2θ

1 , Ȳ 2
0 → q2θ

2 (3.45)

G1
− 1

2
→ −1

2
q1θ

1 , G1
1
2
→ 1

2
p1θ

1 , G2
− 1

2
→ 1

2
q1θ

2 , G2
1
2
→ −1

2
p1θ

2,

where i = 1, 2, is a Lie algebra morphism and gives an embedding of s̃(2) into osp(2|4).
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2. This application can be extended into a Lie algebra isomorphism from s(2) onto osp(2|4) by putting

D → −1

2
(q1p1+q2p2) , V+ → p1p2 , W → 1

4
p2

2 , V− → −1

4
q1p2 , Z̄1

0 → 1

8
p2θ

1 , Z̄2
0 → −1

8
p2θ

2.

(3.46)

Proof. The first part is an immediate consequence of proposition 3.4. One merely needs to replace q, p
by q1, p1 and then make all generators quadratic in the variables p1, p2, q1, q2, θ

1, θ2 by multiplying with
the appropriate power of q2.

We now turn to the second part. The root diagram of osp(2|4) in figure 2 helps to understand. First
〈Z̄1,2

0 , G1,2
1
2

; W,V+, X1〉 form a Lie algebra of dimension 7 that is isomorphic to 〈p2θ
1,2, p1θ

1,2, p2
2, p1p2, p

2
1〉:

in particular, the even part 〈W,V+, X1〉 is commutative and commutes with the 4 other generators;
brackets of the odd generators Z̄1,2

0 , G1,2
1
2

yield the whole vector space 〈W,V+, X1〉. Note that part of

these computations (commutators of X1, G
1,2
1
2

) come from the preceding subsection, the rest must be

checked explicitly. So all there remains to be done is to check for the adjoint action of Z̄0
1,2, G

1,2
1
2

on

se(3|2). We already computed the action of G1,2
1
2

on (even or odd) translations; in particular, G1,2
1
2

preserves this subspace. On the other hand, commutators of G1,2
1
2

with rotations V−, X0, N0, Y 1
2

yield

linear combinations of Z̄1,2
0 and G1,2

1
2

: by definition,

[G1,2
1
2

, V−] = Z̄1,2
0

while other commutators [G1,2
1
2

, X0] = 1
2
G1,2

1
2

, [G1
1
2

, N0] = −G1
1
2

, [G2
1
2

, N0] = G2
1
2

, [G1,2
1
2

, Y 1
2
] = 0 are already

known. Now the symmetry t ↔ ζ, θ1 ↔ θ2 preserves se(3|2) and sends G1,2
1
2

into 2Z̄1,2
0 , and corresponds

to the symmetry p ↔ q on osp(2|4) ∼= P(4|2)
(2) , so the action of Z̄1,2

0 on the rotation-translation symmetry

algebra is the right one. Finally, since W,V+ and X1 are given by commutators of G1,2
1
2

and Z̄2
0 , and the

commutators of D with the other generators are easily checked to be correct, we are done. ¤

In section 5 we shall consider two-point functions that are covariant under the vector space s̃
(2)
1 =

〈X−1, G
1,2

− 1
2

, X0, N0, G
1,2
1
2

, X1〉 ⊂ s̃(2) (actually s̃
(2)
1 ⊂ s̃(2) is made of symmetries of the super-Schrödinger

model). On the root diagram figure 2, the generators of s̃
(2)
1 are all on the f1-axis, hence (as one sees

easily) s̃
(2)
1 is a Lie algebra. The following proposition gives several equivalent definitions of s̃

(2)
1 . We

omit the easy proof.

Proposition 3.7

1. The embedding s̃(2) ⊂ P(2|2)
≤2 of eq. (3.41) in Proposition 3.4 maps s̃

(2)
1 onto P(2|2)

(2) . Hence, by

Proposition 3.5, s̃
(2)
1

∼= osp(2|2).

2. The Poisson bracket on P(2|2)
≤2 (see Proposition 3.4) is of degree -1 with respect to the graduation

d̃eg of P(2|2) defined by d̃eg (q) = d̃eg (p) = d̃eg (θi) = 1
2
: in other words, d̃eg {f, g} = d̃eg f +

d̃eg g − 1 for f, g ∈ P(2|2). Hence the set {X ∈ P(2|2) | d̃eg (X) = 1} ∼= s̃
(2)
1 is a Lie subalgebra of

P(2|2).

3. The Poisson bracket on P(4|2)
(2) (see Proposition 3.5) is of degree -1 with respect to the graduation

deg of P(4|2) defined by deg (q1) = deg (p1) = deg (θ1) = deg (θ2) = 1
2
, deg (p2) = 1, deg (q2) = 0.

Hence the set {X ∈ P(4|2)
(2) | deg (X) = 1} ∼= s̃

(2)
1 ⊕ RD is a Lie subalgebra of P(4|2).
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Note that points 1 and 2 use the first correspondence (see eq. (3.41) in Proposition 3.4) while point
3 uses the second correspondence (see eqs. (3.45,3.46) in Proposition 3.6).

4 Extended Schrödinger and super-Schrödinger transforma-

tions

We shall be looking in this section for infinite-dimensional extensions of various Lie algebras of Schrödinger
type (sch1, s̃

(1), s̃(2), s̃
(2)
1

∼= osp(2|2)) that we introduced until now, hoping that these infinite-dimensional
Lie algebras or super-algebras might play for anisotropic systems a role analogous to that of the Virasoro
algebra in conformal field theory [5]. Note that the Lie superalgebra s(2) ∼= osp(2|4) was purposely not
included in this list, nor could conf3 be included: it seems that there is a ‘no-go theorem’ preventing
this kind of embedding of Schrödinger-type algebras into infinite-dimensional Virasoro-like algebras to
extend to an embedding of the whole conformal-type Lie algebra (see [40]).

In the preceding section, we saw that all Schrödinger or super-Schrödinger or conformal or ‘super-
conformal’ Lie symmetry algebras could be embedded in different ways into some Poisson algebra or
super-algebra P(n|N).

We shall extend the Schrödinger-type Lie algebras by embedding them in a totally different way into
some of the following ‘twisted’ Poisson algebras, where, roughly speaking, one is allowed to consider
the square-root of the coordinate p.

Definition 7. The twisted Poisson algebra P̃(2|N) is the associative algebra of super-functions

f(p, q; θ) := f(p, q; θ1, . . . , θN) =
∑

i∈ 1
2

Z

∑

j∈Z

N∑

k=1

∑

i1<...<ik

ci,j,i1,...,ikp
iqjθi1 . . . θik (4.1)

with usual multiplication and Poisson bracket defined by

{f, g} :=
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
− (−1)δ(f)

N∑

i=1

∂θif∂θig (4.2)

with the graduation δ : P̃(2|N) → N defined as a natural extension of Definition 3 (see subsection 3.5)
on the monomials by

δ(f(p, q)θi1 . . . θik) := k. (4.3)

The Poisson bracket may be defined more loosely by setting {q, p} = 1, {θi, θj} = δi,j and applying
the Leibniz identity.

Definition 8. We denote by gra : P̃(2|N) → {0, 1
2
, 1, . . .} the graduation (called grade) on the associative

algebra P̃(2|N) defined by
gra (qnpmθi1 . . . θik) := m + k/2 (4.4)

on monomials.

This graduation may be defined more simply by setting gra (q) = 0, gra (p) = 1, gra (θi) = 1
2
.

Note that it is closely related but clearly different from the graduations deg , d̃eg defined on untwisted
Poisson algebras in Proposition 3.7.

Definition 9. We denote by P̃(2|N)
≤κ , κ ∈ 1

2
Z (resp. P̃(2|N)

(κ) ) the vector subspace of P̃(2|N) consisting of

all elements of degree ≤ κ (resp. of degree equal to κ).
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Table 2: Conformal dimensions cdim of the generators of the three supersymmetric extensions sv, sns(1) and
sns(2) of the one-dimensional Schrödinger algebra sch1.

cdim pair impair
sv 2 X

3/2 Y
1 M

sns(1) 2 X
3/2 Y G
1 M Ȳ

1/2 M̄

sns(2) 2 X
3/2 Y G1, G2

1 M , N Ȳ 1, Ȳ 2

1/2 P M̄1, M̄2

0 Q

Table 3: Grades gra of the generators of the three supersymmetric extensions sv, sns(1) and sns(2) of the
one-dimensional Schrödinger algebra sch1.

gra pair impair
sv 1 X

1/2 Y
0 M

sns(1) 1 X G
1/2 Y Ȳ
0 M M̄

sns(2) 1 X, N G1, G2

1/2 Y , P Ȳ 1, Ȳ 2

0 M , Q M̄1, M̄2

Since the Poisson bracket is of grade -1 (as was the case for deg and d̃eg ) it is clear that P̃(2|N)
≤κ

(resp. P̃(2|N)
(κ) ) is a Lie algebra if and only if κ ≤ 1 (resp. κ = 1).

It is also easy to check, by the same considerations, that P̃(2|N)
≤κ (κ ≤ 1

2
) is a (proper) Lie ideal of

P̃(2|N)
≤1 , so one may consider the resulting quotient algebra. In the following, we shall restrict to the case

κ = −1
2

and define the Schrödinger-Neveu-Schwarz algebra sns(N) by

sns(N) := P̃(2|N)
≤1 /P̃(2|N)

≤−1/2 (4.5)

The choice for the name is by reference to the case N = 1 (see below).

4.1 Elementary examples

Let us study in this subsection the simplest examples N = 0, 1.
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• N = 0.

The Lie algebra sns(0) is generated by (images in the quotient P̃(2|0)
≤1 /P̃(2|0)

≤−1/2 ) of the fields X,Y,M
defined by

Xφ = φ(q)p , Yφ = φ(q)p
1
2 , Mφ = φ(q). (4.6)

By computing the commutators in the quotient, we see that sns(0) = sv is the Schrödinger-
Virasoro algebra eq. (1.2), with mode expansion Xn = qn+1p, Ym = qm+ 1

2 p
1
2 , Mn = qn (where

n ∈ Z, m ∈ Z + 1
2
). Each of these three fields A = X,Y or M has a mode expansion of the form

An = qn+εpε. We may rewrite this as Aλ−ε = qλpε with λ ∈ Z + ε and see that the shift ε in the
indices of the generators (with respect to the power of q) is equal to the opposite of the power of
p. This will also hold true for any value of N .

It is important to understand that successive ’commutators’ {Yφ,Mψ}, {Yφ1 , {Yφ2 ,Mψ}}, . . . in

P̃(2|0)
≤1 are generally non-zero and yield ultimately the whole algebra P̃(2|0)

≤− 1
2

. This is due to the fact

that derivatives of p
1
2 give p to power −1

2
,−3

2
, . . ., unlike derivatives of integer positive powers of

p, which cancel after a finite time and give only polynomials in p.

The algebraic structure of sv is as follows, see (1.2). It is the semi-direct product sv = virnh(0) :=
〈Xn〉n∈Z n 〈Ym,Mp〉m∈ 1

2
+Z,p∈Z

of a centreless Virasoro algebra and of a two-step nilpotent (that

is to say, whose brackets are central) Lie algebra generated by the Ym and Mn, extending the
Heisenberg algebra h1. The inclusion sch1

∼= sl(2, R) n h1 ⊂ vir n h(0) (see the introduction)
respects the semi-direct product structure. If one considers the generators Xn, Ym and Mn as the
components of associated conserved currents X,Y and M , then X is a Virasoro field, while Y,M
are primary with respect to X, with conformal dimensions 3

2
, respectively 1.

Note also that the conformal dimension of the ε-shifted field Aε (Aε = X,Y,M) with mode
expansion Aε

n = qn+εpε (ε = 0, 1
2
, 1) is equal to 1 + ε. This fact is also a general one (see

subsection 4.2 below).

For later use, we collect in tables 2 and 3 the conformal dimensions and grades of the generators
of sns(N), with N = 0, 1, 2.

• N = 1.

The Lie algebra sns(1) is generated by (images in the quotient) of the even functions Xφ =

φ(q)p, Yφ = φ(q)p
1
2 ,Mφ = φ(q), and of the odd functions Gφ = φ(q)θ1p

1
2 , Ȳφ = φ(q)θ1, M̄φ =

φ(q)θ1p−
1
2 . We use the same notation as in the case N = 0 for the mode expansions Xn =

qn+1p,Mn = qn, Ȳn = qnθ1 (n ∈ Z), Ym = qm+ 1
2 p

1
2 , Gm = qm+ 1

2 p
1
2 θ1, M̄m = qm− 1

2 p−
1
2 θ1 (m ∈

1
2

+ Z), with the same shift in the indices, equal to the opposite of the power in p.

We have a semi-direct product structure sns(1) = ns n h(1), where

ns := 〈X,G〉 (4.7)

is isomorphic to the Neveu-Schwarz algebra [34] with a vanishing central charge, and

h(1) = 〈(Y, Ȳ ), (M, M̄)〉. (4.8)

The commutators of G with these fields read in mode expansion (where we identify the Poisson
bracket with an (anti)commutator)

[Gn, Ym] =
1

2
(n − m)Ȳn+m , [Gn, Ȳm] = Yn+m

[Gn,Mm] = −1

2
mM̄n+m , [Gn, M̄m] = Mn+m. (4.9)
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The Lie algebra h(1) is two-step nilpotent, which is obvious from the definition of the quotient:
the only non-trivial brackets are between elements Yφ and Ȳφ of grade 1

2
and give elements Mφ or

M̄φ of grade 0. Explicitly, we have:

[Yn, Ym] =
1

2
(n − m)Mn+m , [Ȳn, Ȳm] = Mn+m , [Yn, Ȳm] = −1

2
mM̄n+m. (4.10)

The fields (X,G), (Y, Ȳ ) and (M, M̄) can be seen as supersymmetric doublets of conformal fields
with conformal dimensions (2, 3

2
), (3

2
, 1), (1, 1

2
), see also table 2. Once again, the conformal

dimension of any of those fields is equal to the power of p plus one. The grades of the fields are
given by, see table 3

gra (Xφ) = gra (Gφ) = 1 , gra (Yφ) = gra (Ȳφ) =
1

2
, gra (Mφ) = gra (M̄φ) = 0. (4.11)

4.2 General case

We shall actually mainly be interested in the case N = 2, but the algebra sns(2) is quite large and one
needs new insight to study it properly. So let us consider first the main features of the general case.

By considering the grading gra , one sees immediately that sns(N) has a semi-direct product structure

sns(N) = g(N) n h(N) (4.12)

where the Lie algebra g(N) contains the elements of grade one and the nilpotent algebra h(N) contains
the elements of grade 1

2
or 0. The algebra g(N) has been studied by Leites and Shchepochkina [30]

as one of the ’stringy’ superalgebras, namely, the superalgebra k(1|N) of supercontact vector fields on
the supercircle S(1|N). Let us just mention that g(N) shows up as a geometric object, namely, as the
superalgebra of vector fields preserving the (kernel of the) 1-form dq +

∑N
i=1 θidθi. Recall also that a

supercontact vector field X can be obtained from its generating function f = f(q, θ1, . . . , θN) by putting

Xf = −(1 − 1

2
E)(f)∂q −

1

2
∂qfE − (−1)δ(f)

N∑

i=1

∂θif∂θi , (4.13)

where E :=
∑N

i=1 θi∂θi is the Euler operator for odd coordinates, and δ is the eigenvalue of E for
homogeneous superfunctions as defined in (4.3). Then one has

[Xf , Xg] = X{f,g}k(1|N)
(4.14)

where [ , ] is the usual Lie bracket of vector fields, and the contact bracket { , }k(1|N) is given by

{f, g}k(1|N) := −(1 − 1

2
E)(f)∂qg + ∂qf(1 − 1

2
E)(g) − (−1)δ(f)

N∑

i=1

∂θif∂θig. (4.15)

Proposition 4.1 The Lie algebras g(N) and k(1|N) are isomorphic.

Proof: Let f = f(q, θ) and g = g(q, θ) be two E-homogeneous superfunctions. Then

f̃(q, p, θ) = f(q, θ) · p1−δ(f)/2, g̃(q, p, θ) = g(q, θ) · p1−δ(g)/2 (4.16)
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belong to the subalgebra of elements of grade one in P̃(2|N). Formula (4.2) for the Lie bracket of P̃(2|N)

entails

{f̃ , g̃}(q, p, θ) =

[
(1 − δ(g)

2
)(∂qf)g − (1 − δ(f)

2
)f(∂qg)

]
p1− δ(f)+δ(g)

2 − (−1)δ(f)

[
N∑

i=1

∂θif∂θig

]
p2− δ(f)+δ(g)

2

while formula (4.15) for the contact bracket yields

{̃f, g}
k(1|N)(q, p, θ) = −

[
(1 − 1

2
δ(f))f(∂qg) − (1 − 1

2
δ(g))(∂qf)g

]
p1− 1

2
(δ(f)+δ(g))

−(−1)δ(f)

[
N∑

i=1

∂θif∂θig

]
p1− 1

2
(δ(f)+δ(g)−2).

Hence
{f̃ , g̃} eP(2|N) = {̃f, g}

k(1|N).

So the assignment f → f̃ according to (4.16) defines indeed a Lie algebra isomorphism from k(1|N)
onto g(N). ¤

The application f → f̃ just constructed may be extended in the following natural way.

Proposition 4.2 Assign to any superfunction f(q, θ) on S(1|N) the following superfunctions in the

Poisson superalgebra P̃(2|N):

f (α)(q, p, θ) := f(q, θ) · pα−δ(f)/2, α ∈ 1

2
Z (4.17)

so that, in particular, f (1) = f̃ as defined in (4.16). Then f → f (α) defines a linear isomorphism from

the algebra of superfunctions on S(1|N) into the vector space of superfunctions in P̃(2|N) with grade α,
and the Lie bracket (4.2) on the Poisson algebra may be written in terms of the superfunctions on S(1|N)

in the following way: let f, g be two E-homogeneous functions on S(1|N),

{f (α), g(β)} eP(2|N) =

(
−(α − 1

2
E)(f)∂qg − ∂qf(β − 1

2
E)(g) − (−1)δ(f)

N∑

i=1

∂θif∂θig

)(α+β−1)

. (4.18)

Proof. Similar to the proof of proposition 4.1. ¤

Coming back to sns(N), we restrict to the values α = 1, 1
2
, 0. Put fn(q) = qn+1 (n ∈ Z) and gm(q) =

qm+α−|I|/2θI , where I = {i1 < · · · < ik} ⊂ {1, . . . , N} and θI := θi1 ∧ · · · ∧ θik , and m ∈ Z − α + |I|/2.
Then

{f (1)
n , g(α)

m } eP(2|N) = {qn+1p, qm+α−|I|/2θIpα−|I|/2}P(2|N)

=

[
−(m + α − |I|/2) + (α − 1

2
|I|)(n + 1)

]
qn+m+α−|I|/2θIpα−|I|/2

= ((α − |I|/2)n − m)g
(α)
n+m, (4.19)

so the f̃n = f
(1)
n may be considered as the components of a centreless Virasoro field X, while the g

(α)
m

are the components of a primary field ZI
α, with conformal dimension 1 + α − |I|/2, in the sense of [5].

Note also that, as in the cases N = 0, 1 studied in subsection 4.1, the conformal dimension cdim of
each field is equal to the power of p plus one, and the shift in the indices (with respect to the power of
q) is equal to the opposite of the power of p.
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4.3 Study of the case N = 2.

As follows from the preceding subsection, the superalgebra sns(2) is generated by the fields ZI
α where

I = ∅, {1}, {2} or {1, 2} and α = 0, 1
2

or 1. Set

X = Z∅
1 , G1,2 =

1√
2

(
Z

{1}
1 ± iZ

{2}
1

)
, N = i

√
2Z

{1,2}
1 (4.20)

for generators of grade one,

Y =
√

2Z∅
1
2

, Ȳ 1,2 = ±Z
{1}
1
2

+ iZ
{2}
1
2

, P = 2iZ
{1,2}
1
2

(4.21)

for generators of grade 1
2
, and

M = Z∅
0 , M̄1,2 =

1

2
√

2

(
∓Z

{1}
0 + iZ

{2}
0

)
, Q =

i√
2
Z

{1,2}
0 (4.22)

for generators of grade 0. Their conformal dimensions are listed in table 2.

Then the superalgebra sns(2) is isomorphic to k(1|2) n h(2), with

k(1|2) ∼= 〈X,G1,2, N〉
h(2) ∼= 〈Y, Ȳ 1,2, P 〉 ⊕ 〈M, M̄1,2, Q〉 (4.23)

The fields in the first line of eq. (4.23) are of grade 1, while the three first fields in the second line have
grade 1

2
and the three other grade 0.

Put θ = (θ1 + iθ2)/
√

2, θ̄ = (θ1 − iθ2)/
√

2, so that {θ, θ} = {θ̄, θ̄} = 0, {θ, θ̄} = 1 and θθ̄ = −i
√

2θ1θ2

(this change of basis is motivated by a need of coherence with section 3, see Proposition 4.3 below):

then these generators are given by the images in sns(2) = P̃(2|2)
≤1 /P̃(2|2)

≤− 1
2

of

Xφ = φ(q)p , G1
φ = φ(q)θp

1
2 , G2

φ = −φ(q)θ̄p
1
2 , Nφ = −θθ̄φ(q)

Ȳ 1
φ =

√
2φ(q)θ , Ȳ 2

φ = −
√

2φ(q)θ̄ , Yφ =
√

2φ(q)p
1
2 , Pφ = −

√
2θθ̄φ(q)p−

1
2 (4.24)

Mφ = φ(q) , M̄1
φ =

1

2
φ(q)θp−

1
2 , M̄2

φ = −1

2
φ(q)θ̄p−

1
2 , Qφ = −1

2
θθ̄φ(q)p−1.

Commutators in the Lie superalgebra k(1|2) ∼= 〈X,G1,2, N〉 are given as follows:

{Xφ, Xψ} = Xφ′ψ−φψ′ , {Xφ, G
1,2
ψ } = G1,2

1
2
φ′ψ−φψ′ , {Xφ, Nψ} = N−φψ′ (4.25)

(in other words, G1,2
φ have conformal dimension 3

2
, and Nφ conformal dimension 1);

{Gi
φ, G

i
ψ} = 0, i = 1, 2 ; {Nφ, Nψ} = 0

{G1
φ, G

2
ψ} = −Xφψ − N 1

2
φ′ψ−φψ′ (4.26)

{G1,2
φ , Nψ} = ∓G1,2

φψ.

Note that sns(2) is generated (as a Lie algebra) by the fields X,G1,2 and Y since one has the formula

N 1
2
φ′ψ−φψ′ = {G1

φ, G
2
ψ} − Xφψ (4.27)
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for the missing generators of grade 1;

Ȳ 1,2
1
2
(φ′ψ−φψ′)

= {G1,2
φ , Yψ} , −1

2
Pφψ′ = {G1

φ, Ȳ
2
ψ } + Yφψ (4.28)

for the missing generators of grade 1
2
; and

M 1
2
(φ′ψ−φψ′) = {Yφ, Yψ} , M̄1,2

φψ′ = {G1,2
φ ,Mψ} =

1

2
{Yφ, Ȳ

1,2
ψ } , 2Q(φ′ψ+φψ′) = {Yφ, Pψ} (4.29)

for the generators of grade 0.

Proposition 4.3.

1. The subspace R := 〈Mφ − Qφ′ , M̄1
φ〉, (with φ′(t) = dφ(t)/dt) is an ideal of sns(2) strictly included

in the ideal of elements of grade zero.

2. The quotient Lie algebra sns(2)/R has a realization in terms of differential operators of first order
that extends the representation of s̃(2) given e.g. in appendix B : the formulas read (in decreasing
order of conformal dimensions)

−Xφ → φ(t)∂t +
1

2
φ′(t)(r∂r + θ1∂θ1) +

x

2
φ′(t) +

1

4
Mφ′′(t)r2 +

1

4
φ′′(t)rθ1∂θ2

−Yφ → φ(t)∂r + Mφ′(t)r +
1

2
φ′(t)θ1∂θ2

−Mφ → Mφ(t)

−Nφ → φ(t)
(
θ1∂θ1 + θ2∂θ2 − x

)
− M

4
φ′(t)r2 +

1

4
φ′(t)rθ1∂θ2

−Pφ → φ(t)
(
θ1∂θ2 − 2Mr

)

−Qφ → M
∫

φ (4.30)

for the even generators, and

−G2
φ → φ(t)

(
θ1∂t + θ2∂r

)
+ φ′(t)

(
1

2
θ1r∂r + xθ1 + Mrθ2 − 1

2
θ1θ2∂θ2

)
+

M
2

φ′′(t)r2θ1

−G1
φ → φ(t)∂θ1 +

1

2
φ′(t)r∂θ2

−Ȳ 1
φ → φ(t)∂θ2

−Ȳ 2
φ → φ(t)

(
θ1∂r + 2Mθ2

)
+ 2Mφ′(t)rθ1

−M̄1
φ → 0

−M̄2
φ → Mφ(t)θ1 (4.31)

for the odd generators. Their conformal dimensions are listed in table 2 and their grades in table 3.

Proof.

1. Since sns(2) is generated as a Lie algebra by the fields X,G1,2 and Y , one only needs to check that
[Xφ,R] ⊂ R, [G1,2

φ ,R] ⊂ R and [Yφ,R] ⊂ R for any φ. Then straightforward computations show
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that

[Xφ,Mψ − Qψ′ ] = −Mφψ′ + Q(φψ′)′

[Gi
φ,Mψ − Qψ′ ] = −2δi,1M̄

1
φψ′

[Gi
φ, M̄

1
ψ] = −1

2
δi,2(Mφψ − Q(φψ)′)

while [Yφ,Mψ − Qψ′ ] = [Yφ, M̄
1
ψ] = 0 by the definition of sns(2) as a quotient.

2. This is a matter of straightforward but tedious calculations.

¤

Remarks.

1. Each of the above generators is homogeneous with respect to an R3-valued graduation for which
t, r, θ1 are independent measure units and [M] ≡ [t/r2], [θ2] ≡ [θ1r/t].

2. One may read (up to an overall translation) the conformal dimensions of the fields by putting
[t] = −1, [r] = [θ1] = −1

2
, [θ2] = [M] = 0.

3. Consider the two distinct embeddings s̃(2) ⊂ sns(2) and s̃(2) ⊂ P(2|2) with respective graduations
gra (see definition 8) and d̃eg (defined in Proposition 3.7). Then both graduations coincide on

s̃(2). In particular, the Lie subalgebra s̃
(2)
1

∼= osp(2|2) ⊂ s̃(2) may be defined either as the set of

elements X of s̃(2) with d̃eg X = 1 or else as the set of elements with gra X = 1, depending on
whether one looks at s̃(2) as sitting inside P(2|2) or inside P̃(2|2).

4. When we reconsider the four operators (3.24) for the supersymmetric equations of motion

S = 2M0X−1 − Y 2
− 1

2
, S ′ = 2M0G

1
− 1

2
− Y− 1

2
Ȳ 1

0 , S̄ ′ = Y− 1
2
G1

− 1
2
− X−1Ȳ

1
0 , S ′′ = G1

−1/2Ȳ
1
0

and use the Poisson algebra representation (4.24) of sns(2), then S = S ′ = S̄ ′ = S ′′ = 0. The
consequences of this observation remain to be explored.

5. One may check that the algebra (1.5) cannot be obtained by any of the Poisson quotient con-
structions introduced at the beginning of this section.

5 Two-point functions

We shall compute in this section the two-point functions 〈Φ1Φ2〉 that are covariant under some of the
Lie subalgebras of osp(2|4) introduced previously. Consider the two superfields

Φ1 = Φ1(t1, r1, θ1, θ̄1) = f1(t1, r1) + φ1(t1, r1)θ1 + φ̄1(t1, r1)θ̄1 + g1(t1, r1)θ1θ̄1

Φ2 = Φ2(t2, r2, θ2, θ̄2) = f2(t2, r2) + φ2(t2, r2)θ2 + φ̄2(t2, r2)θ̄2 + g2(t2, r2)θ2θ̄2 (5.1)

with respective masses and scaling dimensions (M1, x1) and (M2, x2). With respect to equation (3.11),
we performed a change of notation. The Grassmann variable previously denoted by θ1 is now called θ
and the Grassmann variable θ2 is now called θ̄. The lower indices of the Grassmann variables now refer
to the first and second superfield, respectively. The two-point function is

C(t1, r1, θ1, θ̄1; t2, r2, θ2, θ̄2) := 〈Φ1(t1, r1, θ1, θ̄1)Φ2(t2, r2, θ2, θ̄2)〉. (5.2)
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Since we shall often have invariance under translations in either space-time or in superspace, we shall
use the following abbreviations

t := t1 − t2 , r := r1 − r2 , θ := θ1 − θ2 , θ̄ := θ̄1 − θ̄2 (5.3)

The generators needed for the following calculations are collected in appendix B.

Proposition 5.1. The osp(2|4)-covariant two-point function is, where the constraints x := x1 = x2

and M := M1 = −M2 hold true and c2 is a normalization constant

C = c2δx, 1
2
t−

1
2 exp

(
−M

2

r2

t

) (
θ̄ − r

2t
θ
)

(5.4)

In striking contrast with the usual ‘relativistic’ N = 2 superconformal theory, see e.g. [9, 33, 37],
we find that covariance under a finite-dimensional Lie algebra is enough to fix the scaling dimension of
the quasiprimary fields. We have already pointed out that this surprising result can be traced back to
our non-relativistic identification of the dilatation generator X0 as −1

2
E11 − 1

2
x in proposition 3.1.

It is quite illuminating to see how the result (5.4) is modified when one considers two-point functions
that are only covariant under a subalgebra g of osp(2|4). We shall consider the following four cases and
refer to figure 3 for an illustration how these algebras are embedded into osp(2|4).

1. g = s̃(1), which describes invariance under an N = 1 superextension of the Schrödinger algebra;

2. g = s̃(2), which describes invariance under an N = 2 superextension of the Schrödinger algebra;

3. g = osp(2|2), where, as compared to the previous case g = s̃(2), invariance under spatial transla-
tions is left out, which opens prospects for a future application to non-relativistic supersymmetric
systems with a boundary;

4. g = se(3|2), for which time-inversions are left out.

From the cases 2 and 4 together, the proof of the proposition 5.1 will be obvious.

Proposition 5.2. The non-vanishing two-point function, s̃(1)-covariant under the representation
(3.18,3.23,3.25,3.26), of the superfields Φ1,2 of the form (5.1) is given by

C = δx1,x2δM1+M2,0 [c1C1 + c2C2] (5.5)

where c1,2 are constants and

C1(t, r; θ1, θ̄1, θ2, θ̄2) = t−x1 exp

(
−M1

2

r2

t

){
1 +

1

t

(
−x1 +

M1

2

r2

t

)
θ1θ2 + 2M1θ̄1θ̄2

−M1
r

t

(
θ1θ̄2 − θ2θ̄1

)
− 1

t
M1(2x1 − 1)θ1θ2θ̄1θ̄2

}
(5.6)

C2(t, r; θ1, θ̄1, θ2, θ̄2) = t−x1e−M1r2/2t

{
− r

2t
(θ1 − θ2) + (θ̄1 − θ̄2) +

1

t

(
1

2
− x1

)
(θ̄1θ1θ2 − θ̄2θ1θ2)

}
.

The proof is given in appendix A.
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For ordinary quasiprimary superfields with fixed masses, the two-point function C = c1C1 + c2C2

reads as follows, where we suppress the obvious arguments (t, r) and also the constraints x := x1 = x2

and M := M1 = −M2 :

〈f1f2〉 = c1 t−xe−
Mr2

2t

〈φ1φ2〉 = c1

(
−x +

M
2

r2

t

)
t−x−1e−

Mr2

2t

〈φ̄1φ̄2〉 = 2Mc1 t−xe−
Mr2

2t (5.7)

〈φ1φ̄2〉 = 〈φ̄1φ2〉 = −c1 Mr t−x−1e−
Mr2

2t

〈g1g2〉 = −c1 M(2x − 1)t−x−1e−
Mr2

2t

〈f1φ2〉 = −〈φ1f2〉 = c2
r

2
t−x−1e−

Mr2

2t

〈f1φ̄2〉 = −〈φ̄1f2〉 = −c2 t−xe−
Mr2

2t

〈φ̄1g2〉 = 〈g1φ2〉 = −c2

(
1

2
− x

)
t−x−1e−

Mr2

2t

〈φ1φ̄1〉 = 〈φ2φ̄2〉 = 〈φ1g2〉 = 〈g1φ̄2〉 = 0.

Corollary. Any s̃(2)-covariant two-point function has the following form, where x = x1 = x2 and
M = M1 = −M2 and c1,2 are normalization constants

C = c1δx,0 δM,0 + c2δx, 1
2
t−

1
2 exp

(
−M

2

r2

t

) (
θ̄ − r

2t
θ
)

(5.8)

For the proof see appendix A. We emphasize that covariance under s̃(2) is already enough to fix x
to be either 0 or 1

2
. The contrast with s̃(1) comes from the fact that s̃(1) does not contain the generator

N0, while s̃(2) does. The only non-vanishing two-point functions of the superfield components are

〈f1f2〉 = δx,0δM,0 c1

〈f1φ2〉 = −〈φ1f2〉 = δx, 1
2
c2

r

2
t−3/2 exp

(
−M

2

r2

t

)
(5.9)

〈f1φ̄2〉 = −〈φ̄1f2〉 = −δx, 1
2
c2 t−1/2 exp

(
−M

2

r2

t

)
.

We now study the case of covariance under the Lie algebra

g =
〈
X−1,0,1, G

1
± 1

2
, G2

± 1
2
, N0

〉
∼= osp(2|2), (5.10)

see appendix B for the explicit formulas. We point out that neither space-translations nor phase-shifts
are included in osp(2|2), so that the two-point functions will in general depend on both space coordinates
r1,2, and there will in general be no constraint on the masses M1,2. On the other hand, time-translations
and odd translations are included, so that C will only depend on t = t1 − t2 and θ = θ1 − θ2. From a
physical point of view, the absence of the requirement of spatial translation-invariance means that the
results might be used to describe the kinetics of a supersymmetric model close to a boundary surface,
especially for semi-infinite systems [18, 39, 1].

32



Proposition 5.3. There exist non-vanishing, osp(2|2)-covariant two-point functions, of quasiprimary
superfields Φi of the form (5.1) with scaling dimensions xi, i = 1, 2, only in the three cases x1 +x2 = 0, 1
or 2. Then the two-point functions C are given as follows.

(i) if x1 + x2 = 0, then necessarily x1 = x2 = 0, M1 = M2 = 0 and

C = a0 (5.11)

where a0 is a constant.

(ii) if x1 + x2 = 1, then

C = t−1/2

{(
θ̄1 −

r1

2t
(θ1 − θ2)

)
h1 +

√
M1

M2

(
θ̄2 −

r2

2t
(θ1 − θ2)

)
h2

}
(5.12)

where

h1 =
(r1r2

t

)1/2
(

r1

r2

)−(x1−x2)/2 (
αJµ

(Mr1r2

t

)
+ βJ−µ

(Mr1r2

t

))
exp

[
−M1

2

r2
1

t
+

M2

2

r2
2

t

]

h2 =
(r1r2

t

)1/2
(

r1

r2

)−(x1−x2)/2 (
αJµ+1

(Mr1r2

t

)
− βJ−µ−1

(Mr1r2

t

))
exp

[
−M1

2

r2
1

t
+

M2

2

r2
2

t

]

(5.13)

and
M2 = M1M2 , 1 + 2µ = x2 − x1 (5.14)

while Jµ(x) are Bessel functions and α, β are arbitrary constants.

(iii) if x1 + x2 = 2, then

C = (θ1 − θ2)

(
θ̄1 −

r1

r2

θ̄2

)
B + θ̄1θ̄2D (5.15)

where

B = t−3/2

(
r2
1

t

)−(x1−1/2)

h
(r1r2

t

)
exp

[
−M1

2

r2
1

t
+

M2

2

r2
2

t

]

D =
2t

r2

B (5.16)

and where h is an arbitrary function.

Again, the proof in given in appendix A. A few comments are in order.

1. In applications, one usually considers either (i) response functions which in a standard field-

theoretical setting may be written as a correlator 〈φφ̃〉 of an order-parameter field φ with a ‘mass’

Mφ ≥ 0 and a conjugate response field φ̃ whose ‘mass’ is non-positive Meφ ≤ 0 [19, 38] or else (ii)
for purely imaginary masses M = im, correlators 〈φφ∗〉 of a field and its complex conjugate [18].

2. The two supercharges essentially fix the admissible values of the sum of the scaling dimensions
x1 + x2, which is a consequence of covariance under the supersymmetry generator N0.
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3. For systems which are covariant under the scalar Schrödinger generators X±1,0 only, it is known
that for scalar quasiprimary fields φ1,2 [18]

〈φ1(t1, r1)φ2(t2, r2)〉 = δx1,x2t
−x1h

(
r1r2

t1 − t2

)
exp

(
−M1

2

r2
1

t1 − t2
+

M2

2

r2
2

t1 − t2

)
(5.17)

where h is an arbitrary function. At first sight, there appears some similarity of (5.17) with
the result (5.16) obtained for x1 + x2 = 2 in that a scaling function of a single variable remains
arbitrary, but already for x1 + x2 = 1 the very form of the scaling function (5.13) is completely
distinct. The main difference of eq. (5.17) with our Proposition 5.3 is that here we have a condition
on the sum of the scaling dimensions, whereas (5.17) rather fixes the difference x1 − x2 = 0.

Proposition 5.4 The non-vanishing two-point function which is covariant under se(3|2) is, where
x = x1 + x2 and c2 and d0 are normalization constants

C = c2 δx,1δM1+M2,0 t−1/2 exp

(
−M1

2

r2

t

) (
θ̄ − r

2t
θ
)

+d0 δM1+M2,0 M(x−1)/2
1 t−(x+1)/2 exp

(
−M1

2

r2

t

)
θθ̄ (5.18)

This makes it clear that one needs both N = 2 supercharges and the time-inversions t 7→ −1/t in
order to obtain a finite list of possibilities for the scaling dimension x = x1 + x2.

6 Conclusions

Motivated by certain formal analogies between 2D conformal invariance and Schrödinger-invariance, we
have attempted to study some mathematical aspects of Lie superalgebras which contain the Schrödinger
algebra sch1 as a subalgebra. Our discussion has been largely based on the free non-relativistic par-
ticle, either directly through the free Schrödinger (or diffusion) equation, or else as a two-component
spinor which solves the Dirac-Lévy-Leblond equations. In both cases, it is useful to consider the
(non-relativistic) mass parameter M as an additional variable which allows to extend the dynamical
symmetry algebra from the Schrödinger algebra to a full conformal algebra (conf3)C ⊃ sch1.

Including these building blocks into a superfield formalism, we have shown that the solution f of the

Schrödinger equation, the spinor

(
ψ
φ

)
and an auxiliary field g form a supermultiplet such that the

equations of motion are supersymmetric invariant, with N = 2 supercharges. Depending on whether the
mass is considered as a constant or as an additional variable, we have defined two free-particle models,
see table 1. Furthermore, taking the scale-invariance and even the invariance under time inversions
t 7→ −1/t into account, we have shown that the supersymmetries of these models can be extended to
the superalgebra s̃(2) ∼= osp(2|2) n sh(2|2) for a fixed mass M and further to s(2) ∼= osp(2|4) when
M is considered as a variable. These results take on a particularly transparent form when translated
into a Poisson-algebra language. In this context, we have seen that several distinct gradings of the
superalgebras provided useful insight.

Motivated by the known extension of sch1 to the infinite-dimensional Schrödinger-Virasoro algebra
sv, and by the extension of the Virasoro algebra by the Neveu-Schwarz algebra, we then looked for
similar extensions of the Lie superalgebras of Schrödinger type found so far. By introducing twisted
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Poisson algebras, we defined the Schrödinger-Neveu-Schwarz algebras sns(N) with N supercharges and
derived explicit formulas for the generators, both in a Poisson geometry setup, see eq. (4.24), and as
linear differential super-operators, see eqs. (4.30,4.31), and obtained in particular an explicit embedding
of s̃(2) into sns(2).

Finally, we derived explicit predictions (see section 5) for the two-point functions of quasiprimary
superfields of models satisfying some or all of the non-relativistic N = 2 supersymmetries of either
free-particle model. Remarkably, the presence of the supersymmetric generator N0 essentially fixes the
sum of the scaling dimensions x1 + x2 of the two quasiprimary superfields, rather than their difference
as commonly seen in relativistic superconformal theories. In particular, non-zero osp(2|4)-covariant
two-point functions arise only for a scaling dimension equal to 1

2
, and are completely determined (up

to normalization). This surprising result appears to be peculiar to non-relativistic systems. Physically,
this result means that only the simple random walk (or rather its supersymmetric extension) has a non-
vanishing two-point function which is covariant under the N = 2 super-Schrödinger-invariance with
time-inversions included, as constructed in this paper.

We have left open many important questions, of which we merely mention two. First, it remains to
be seen what the possible central extensions of the superalgebras sns(N) are; second, are there richer
physical models than the free particle which realize these non-relativistic supersymmetries ?
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Appendix A. Supersymmetric two-point functions

A.1 s̃(1)-covariant two-point functions

We prove the formulas (5.5) and (5.6) of proposition 5.2 for the two independent s̃(1)-covariant two-point
functions.

Let Φ1 and Φ2 two superfields with respective masses and dimensions (M1, x1), (M2, x2) as in
Section 5, and let C(t1, r1, θ1, θ̄1; t2, r2, θ2, θ̄2) := 〈Φ1(t1, r1, θ1)Φ2(t2, r2, θ2)〉 be the associated two-point
function. One assumes that C is covariant under the Lie symmetry representation (see e.g. appendix B
for a list of the generators) of the ’chiral’ superalgebra s̃(1) generated by X−1, X0, X1, Y± 1

2
, G− 1

2
:=

G1
− 1

2

+ G2
− 1

2

, Ȳ0 := Ȳ 1
0 + Ȳ 2

0 and M0.

Because of the invariance under time- and space-translations X−1, Y− 1
2

and under the mass generator
M0, the two-point function C depends on time and space only through the coordinates t := t1 − t2 and
r := r1 − r2, and one can assume that Φ1 and Φ2 have opposite masses. We set M = M1 = −M2.

Covariance under X0 of the two-point function C gives

(
t∂t +

1

2
r∂r +

1

2
(θ1∂1 + θ2∂2) +

1

2
(x1 + x2)

)
C(t, r, θ1, θ̄1, θ2, θ̄2) = 0. (A1)

Covariance under Y 1
2

gives

(
t∂r + Mr +

1

2
(θ1∂̄1 + θ2∂̄2)

)
C(t, r, θ1, θ̄1, θ2, θ̄2) = 0. (A2)

Covariance under X1 entails

(
t2∂t + tr∂r + tθ1∂1 + tx1 +

1

2
Mr2 +

1

2
rθ1∂̄1

)
C(t, r, θ1, θ̄1, θ2, θ̄2) = 0. (A3)

Covariance under G− 1
2

yields

(
∂1 + ∂2 + θ∂t + θ̄∂r

)
C(t, r, θ1, θ̄1, θ2, θ̄2) = 0. (A4)

Finally, covariance under Ȳ0 yields

(
∂̄1 + ∂̄2 + (θ1 − θ2)∂r + 2M(θ̄1 − θ̄2)

)
C(t, r, θ1, θ̄1, θ2, θ̄2) = 0. (A5)

In general, the two-point function may be written as

C(t, r, θ1, θ̄1, θ2, θ̄2) = A(t, r) + Bi(t, r)θi + B̄i(t, r)θ̄i

+C12θ1θ2 + C1̄2̄θ̄1θ̄2 + C11̄θ1θ̄1 + C22̄θ2θ̄2 + C12̄θ1θ̄2 + C21̄θ2θ̄1

+D1(t, r)θ̄1θ1θ2 + D2(t, r)θ̄2θ1θ2 + D̄1(t, r)θ1θ̄1θ̄2 + D̄2(t, r)θ2θ̄1θ̄2

+E(t, r)θ1θ2θ̄1θ̄2. (A6)

where i is summed over i = 1, 2.

Covariance under G− 1
2

eq. (A4) gives the following system of linearly independent equations:
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B1 = −B2 (A7)

C12 = ∂tA (A8)

C11̄ + C21̄ =: −∂rA, C12̄ + C22̄ = ∂rA (A9)

∂r(B̄1 + B̄2) + (D̄1 + D̄2) = 0 (A10)

∂tB̄1 − ∂rB1 − D1 = 0 (A11)

∂tB̄2 + ∂rB1 − D2 = 0 (A12)

∂tC1̄2̄ − ∂rC11̄ − ∂rC12̄ − E = 0 (A13)

∂t(D̄1 + D̄2) + ∂r(D1 + D2) = 0 (A14)

Covariance under Ȳ0 gives the following system of linearly independent equations:

B̄1 = −B̄2 (A15)

∂rA = C11̄ + C12̄,−∂rA = C21̄ + C22̄ (A16)

2MA = C1̄2̄ (A17)

∂r(B1 + B2) + (D1 + D2) = 0 (A18)

∂rB̄1 − 2MB1 + D̄1 = 0 (A19)

−∂rB̄2 + 2MB2 − D̄2 = 0 (A20)

∂rC11̄ + ∂rC21̄ + 2MC12 − E = 0 (A21)

∂r(D̄1 + D̄2) + 2M(D1 + D2) = 0 (A22)

Combining these relations, we can express all the coefficients of C in terms of A,B1, B̄1, D1, D̄1 and
Γ := C11̄ = C22̄ through the obvious relations B1 + B2 = B̄1 + B̄2 = D1 + D2 = D̄1 + D̄2 = 0 and the
(less obvious) relations

C21̄ = −∂rA − Γ, C12̄ = ∂rA − Γ, C12 = ∂tA, C1̄2̄ = 2MA. (A23)

There remain only three supplementary equations : (A11), (A19) and

(2M∂t − ∂2
r )A − E = 0. (A24)

Recall that the only solution (up to scalar multiplication) of the equations

(t∂r + Mr)F (t, r) = (t∂t +
1

2
r∂r + λ)F (t, r) = 0 (A25)

is F (t, r) = Fλ(t, r) := t−λe−Mr2/2t, which one might call a ’Schrödinger quasiprimary function’. Look-
ing now at the consequences of X0- and Y− 1

2
-covariance, one understands easily that the coefficients

in C of the polynomials in θi, θ̄i that depend on θ1, θ2 only through θ1θ̄1 and θ2θ̄2 are Schrödinger
quasiprimary functions, namely:

A = aF 1
2
(x1+x2)

, B̄1 = b̄F 1
2
(x1+x2)

D̄1 = d̄F 1
2
(x1+x2)+

1
2

, Γ = γF 1
2
(x1+x2)+ 1

2
(A26)

E = eF 1
2
(x1+x2)+1

37



with yet undetermined constants a, b̄, d̄, γ, e. This, together with the previous relations, allows one to
express all the coefficients of C in terms of these constants, since all other coefficients are derived directly
from A, B̄1, D̄1, Γ and E. Equation (A24) gives

e = −aM(x1 + x2 − 1). (A27)

Finally, it remains to check covariance under X1, which gives constraints on the scaling dimensions of
the Schrödinger quasiprimary coefficients, namely: x1 = x2 unless a = b̄ = 0; γ = d̄ = 0 (otherwise we
would have simultaneously x1 −x2 = 1 and x1 −x2 = −1). In order to get a non-zero solution, we have
to put in the constraint x1 = x2 =: x, and find C = aC1 + b̄C2.

One then checks that all supplementary relations coming from Y− 1
2
, X0- and X1-covariance are

already satisfied. ¤

A.2 s̃(2)-covariant two-point functions

Starting from an s̃(1)-covariant two-point function C = aC1 + b̄C2, all there is to do is to postulate
invariance of C under the vector field G1

− 1
2

= −∂1 − ∂2. We find that either b̄ = 0 and then also x = 0

and M = 0, or else a = 0 and furthermore x = 1
2

which establishes (5.8). ¤

A.3 osp(2|2)-covariant two-point functions

Here, we prove proposition 5.3. From the definition of osp(2|2) = 〈X±1,0, G
1,2

± 1
2

, N0〉 we see that time-

translations X−1 = −∂t1 − ∂t2 and odd translations G1
− 1

2

= −∂θ1 − ∂θ2 are included, hence C will

only depend on t = t1 − t2 and θ = θ1 − θ2. From the explicit differential-operator representation
(3.18,3.23,3.25,3.26) we obtain the following covariance conditions for C = C(t, r1, r2; θ, θ̄1, θ̄2)

−X0C =

[
t∂t +

1

2
(r1∂r1 + r2∂r2 + θ∂θ) +

x1 + x2

2

]
C = 0

−X1C =

[
t2∂t + tθ∂θ + tr1∂r1 + x1t +

1

2

(
M1r

2
1 + M2r

2
2

)
+

r1

2
θ∂θ̄1

]
C = 0

−G1
1
2
C =

[
t∂θ +

1

2

(
r1∂θ̄1

+ r2∂θ̄2

)]
C = 0

−G2
− 1

2
C =

[
θ∂t + ∂r1 θ̄1 + ∂r2 θ̄2

]
C = 0

−G2
1
2
C =

[
tθ∂t + t∂r1 θ̄1 +

1

2

(
(r1∂r1 + 2x1) θ + 2

(
M1r1θ̄1 + M2r2θ̄2

)
− θθ̄1∂θ̄1

)]
C = 0

−N0C =
[
θ∂θ + θ̄1∂θ̄1

+ θ̄2∂θ̄2
− x1 − x2

]
C = 0 (A28)

The solutions of this system of equations can be written in the form

C = A + θA0 + θ̄1A1 + θ̄2A2 + θθ̄1B1 + θθ̄2B2 + θθ̄1θ̄2C + θ̄1θ̄2D (A29)

where the functions A = A(t, r1, r2), . . . depend on the variables t, r1, r2 and are to be determined. In
what follows, the arguments of these functions will usually be suppressed.

First, we consider the condition G1
1
2

C = 0 which together with (A29) leads to the following equations
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tA0 +
r1

2
A1 +

r2

2
A2 = 0

tB1 −
1

2
r2D = 0

tB2 +
1

2
r1D = 0

C = 0 (A30)

Next, we use the condition N0C = 0, which together with (A29) leads to

(x1 + x2)A = 0

(1 − x1 − x2)Ai = 0

(2 − x1 − x2)Bj = 0

(2 − x1 − x2)D = 0 (A31)

for i = 0, 1, 2 and j = 1, 2. Therefore, we have to distinguish the three cases x1+x2 = 0, 1, 2, respectively.

We begin with the case (i) x1 + x2 = 0. Then Ai = Bj = C = D = 0. From G2
− 1

2

C =
[
θ∂t + θ̄1∂r1 + θ̄2∂r2

]
A = 0 it follows that A = a0 is a constant. Furthermore, the covariance X1C = 0

implies x1 = x2 = 0 and M1 = M2 = 0.

Next, we consider the case (ii) x1 + x2 = 1. Then A = Bi = C = D = 0 and it remains to find A1,2,
whereas A0 is given by the first of eqs. (A30). From the condition G2

− 1
2

C = 0, we have

∂tA1 = ∂r1A0 , ∂tA2 = ∂r2A0 , ∂r1A2 = ∂r2A1 (A32)

From the condition G2
1
2

C = 0, we find

(
t∂t +

1

2
r1∂r1 +

(
x1 −

1

2

))
A1 = (t∂r1 + M1r1) A0

(
t∂t +

1

2
r1∂r1 + x1

)
A2 = M2r2A0

(t∂r1 + M1r1) A2 = M2r2A1 (A33)

Dilatation-covariance X0C = 0 gives
(

t∂t +
1

2
(r1∂r1 + r2∂r2) +

1

2
(1 + x1 + x2)

)
A0 = 0

(
t∂t +

1

2
(r1∂r1 + r2∂r2) +

1

2
(x1 + x2)

)
A1,2 = 0 (A34)

and finally, covariance under the special transformations X1C = 0 leads to

(
t (r1∂r1 − r2∂r2) + t(1 + x1 − x2) +

(
M1r

2
1 + M2r

2
2

))
A0 + r1A1 = 0(

t (r1∂r1 − r2∂r2) + t(x1 − x2) +
(
M1r

2
1 + M2r

2
2

))
A1,2 = 0 (A35)

To solve eqs. (A30,A32,A33,A34,A35), we use that x1 + x2 = 1 and have the scaling ansatz

A1,2 = t−1/2A1,2(u1, u2) , A0 = t−1A0(u1, u2) (A36)

39



where ui = ri/
√

t , i = 1, 2. Then (A30) becomes A0 + 1
2
u1A1 + 1

2
u2A2 = 0. On the other hand, (A35)

gives

A1,2(u1, u2) = h1,2(u1u2)u
x2−x1
1 exp

[
−M1

2
u2

1 +
M2

2
u2

2

]
(A37)

It is now easily seen that the remaining equations all reduce to the following system of equations for
the two functions h1,2(v)

dh1(v)

dv
= −M1h2(v)

dh2(v)

dv
= M2h1(v) + (x1 − x2)

1

v
h2(v) (A38)

The general solution of these equations is found with standard techniques

h1(v) = α′

(Mv

2

)−µ

Jµ(Mv) + β′

(M
2v

)µ

J−µ(Mv)

h2(v) =

√
M2

M1

[
α′

(Mv

2

)−µ

Jµ+1(Mv) − β′

(M
2v

)µ

J−µ−1(Mv)

]
(A39)

where we used eq. (5.14), Jµ is a Bessel function and α′, β′ are arbitrary constants. Combination with
(A29) establishes the second part of the assertion.

Finally, we consider the third case (iii) x1 + x2 = 2. Then A = Aj = C = 0 and we still have to find
B1,2 and D. Going through the covariance conditions, we obtain the following system of equations

D =
2t

r2

B1 , D = −2t

r1

B2 (A40)

and

∂r1B2 − ∂r2B1 = ∂tD(
t∂t +

1

2
(r1∂r1 + r2∂r2) + 1

)
D = 0

(
t∂t +

1

2
(r1∂r1 + r2∂r2) +

3

2

)
B1,2 = 0

(
t2∂t + tr1∂r1 + t(x1 + 1) +

1

2
M1r

2
1 +

1

2
M2r

2
2

)
B1 = 0

(
t2∂t + tr1∂r1 + tx1 +

1

2
M1r

2
1 +

1

2
M2r

2
2

)
B2 = 0

(
t2∂t + tr1∂r1 + tx1 +

1

2
M1r

2
1 +

1

2
M2r

2
2

)
D = 0

(
t∂t +

1

2
r1∂r1 + x1 −

1

2

)
D − (t∂r1 + M1r1) B2 + M2r2B1 = 0 (A41)

We see that B2 = −(r1/r2)B1 and it further follows that eqs. (A41) can be reduced to the system
(

t∂t +
1

2
(r1∂r1 + r2∂r2) +

3

2

)
B1 = 0

(
t2∂t + tr1∂r1 + t(x1 + 1) +

1

2
M1r

2
1 +

1

2
M2r

2
2

)
B1 = 0 (A42)
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with the general solution

B1 = t−3/2f
(r1r2

t

)(
r2
1

t

) 1
2
−x1

exp

[
−M1

2

r2
1

t
+

M2

2

r2
2

t

]
(A43)

where f = f(v) is an arbitrary function. We have hence found the function B = B1. Combining this
with (A29) then yields the last part of the assertion. ¤

A.4 se(3|2)-covariant two-point functions

In order to prove proposition 5.4, we first observe that because of the covariance under the generators
X−1, Y− 1

2
,M0, G

1
− 1

2

and Ȳ 1
0 , we have

C = δ(M1 + M2)G(t, r,M1, θ, θ̄) (A44)

where the notation of eq. (5.3) was used. The remaining six conditions become
[
t∂t +

1

2
r∂r +

1

2
θ∂θ +

x1 + x2

2

]
G = 0 (A45)

[
t∂r + M1r +

1

2
θ∂θ̄

]
G = 0 (A46)

[
−∂M1∂r + r∂t + θ̄∂θ

]
G = 0 (A47)[

t∂t + r∂r +
1

2
θ∂θ +

1

2
θ̄∂θ̄ −M1∂M1 + (x1 + x2 − 1)

]
G = 0 (A48)

[
θ∂t + θ̄∂r

]
G = 0 (A49)[

θ∂r + 2M1θ̄
]
G = 0 (A50)

These are readily solved through the expansion

G = A + θB + θ̄C + θθ̄D (A51)

where A = A(t, r,M1) and so on. Now, from eq. (A49) we have ∂tA = ∂rA = ∂tC−∂rB = 0. Similarly,
from eq. (A50) we find 2M1A = 0 and ∂rC = 2M1B.

First, we consider the coefficient A. From (A45) it follows that x1 + x2 = 0 and from (A48) it can
be seen that (M1∂M1 + 1)A = 0, hence A = a0/M1. Because of 2M1A = 0 as derived above it follows
a0 = 0.

Next, we find C from eqs. (A45) and (A46) which give (t∂t +
1
2
r∂t +

x
2
)C = 0 and (t∂r +M1r)C = 0

with the result C = c(M1)t
−x/2 exp (−M1r

2/(2t)). From the above relation ∂rC = 2M1B it follows
that B = −r/(2t)C and the relation ∂tC −∂rB = 0 derived before then implies x = x1 +x2 = 1. Hence
the terms parametrized jointly by B and C reads (θ̄− θr/t)c(M1)t

−1/2e−M1r2/(2t). Its covariance under
V− and D eqs. (A47,A48) leads to c(M1) = c2 = cste..

Finally, it remains to find D, which completely decouples from the other coefficients. From eqs.
(A45,A46,A47,A48) we have, with x = x1 + x2

[
t∂t +

1

2
r∂r +

1

2
(x + 1)

]
D = 0

[t∂r + M1r] D = 0

[−∂M1∂r + r∂t] D = 0 (A52)

[t∂t + r∂r −M1∂M1 + x] D = 0
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whose general solution is

D = d0M(x−1)/2
1 t−(x+1)/2 exp

(
−M1

2

r2

t

)
(A53)

which proves the assertion. ¤

A.5 osp(2|4)-covariant two-point functions

In order to prove the proposition 5.1 it is enough to observe that osp(2|4) includes both s̃(2) and
se(3|2), hence osp(2|4)-covariant two-point functions must be also covariant under these subalgebras.
The assertion follows immediately by comparing eqs. (5.8) and (5.18). ¤

Appendix B.

In order to help the reader find his way through the numerous Lie superalgebra defined all along the
article, we recall here briefly their definitions and collect the formulas for the realization of osp(2|4) as
Lie symmetries of the (3|2)-supersymmetric model.

The super-Euclidean Lie algebra of R3|2 is

se(3|2) =
〈
X−1,0, Y± 1

2
,M0, D, V−, G1,2

− 1
2

, Ȳ 1,2
0

〉
(B1)

whose commutator relations are given at the end of section 3.1 (see the root diagram on figure 3c).
From this, the super-Galilean Lie algebra sgal ⊂ se(3|2) is obtained by fixing the mass

sgal =
〈
X−1,0, Y± 1

2
,M0, G

1,2

− 1
2

, Ȳ 1,2
0

〉
(B2)

The super-Schrödinger algebras with N = 1 or N = 2 supercharges are called s̃(1) and s̃(2) and read

s̃(1) =
〈
X±1,0, Y± 1

2
,M0, G

1
− 1

2
+ G2

− 1
2
, G1

1
2

+ G2
1
2
, Ȳ 1

0 + Ȳ 2
0

〉
(B3)

and
s̃(2) =

〈
X±1,0, Y± 1

2
,M0, G

1,2

± 1
2

, Ȳ 1,2
0 , N0

〉
∼= osp(2|2) n sh(2|2) (B4)

The commutators of s̃(2) are coherent with the root diagram of figure 3a and those of s̃(1) ⊂ s̃(2) follow
immediately. Finally, all these Lie superalgebras can be embedded into the Lie superalgebra s(2)

s(2) =
〈
X±1,0, Y± 1

2
,M0, D,N0, G

1,2

± 1
2

, Ȳ 1,2
0 , V±,W, Z̄1,2

0

〉
∼= osp(2|4), (B5)

see figure 2 for the root diagram. This is the largest dynamical symmetry algebra of the (3|2)-
supersymmetric model with equations of motion (3.14). To make the connection with the infinite-
dimensional Lie superalgebras introduced in section 4, let us mention that the Lie algebra

s̃
(2)
1 =

〈
X±1,0, N0, G

1,2

± 1
2

〉
∼= osp(2|2) (B6)

is the subalgebra of s̃(2) made up of all grade-one elements, with the identification of s̃(2) as a subalgebra
of sns(2)/R given in Proposition 4.3.

Let us finally give explicit formulas for the realization of osp(2|4) as Lie symmetries of the (3|2)-
supersymmetric model, using the notation of section 3 and 4. In formulas (B7) through (B21), the
indices n range through −1, 0, 1 while m = ±1

2
. Note that these formulas are compatible with those of

Proposition 4.3 if one substitutes θ1 for θ, θ2 for θ̄, and 2M for ∂ζ .
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Xn = −tn+1∂t −
n + 1

2
tn

(
r∂r + θ1∂θ1

)
− (n + 1)x

2
tn − n(n + 1)

8
tn−1r2∂ζ

−n(n + 1)

4
tn−1rθ1∂θ2 (B7)

Ym = −tm+1/2∂r −
1

2

(
m +

1

2

)
tm−1/2r∂ζ −

1

2

(
m +

1

2

)
tm−1/2θ1∂θ2 (B8)

M0 = −1

2
∂ζ (B9)

D = −t∂t − ζ∂ζ − r∂r −
1

2

(
θ1∂θ1 + θ2∂θ2

)
− x (B10)

N0 = −θ1∂θ1 − θ2∂θ2 + x (B11)

G1
m = −tm+1/2∂θ1 − 1

2

(
m +

1

2

)
tm−1/2r∂θ2 (B12)

G2
m = −tm+1/2

(
θ1∂t + θ2∂r

)
−

(
m +

1

2

)
tm−1/2

(
1

2
θ1r∂r +

1

2
rθ2∂ζ −

1

2
θ1θ2∂θ2 + xθ1

)

−1

4

(
m2 − 1

4

)
tm−3/2r2θ1∂ζ (B13)

Ȳ 1
0 = −∂θ2 (B14)

Ȳ 2
0 = −θ1∂r − θ2∂ζ (B15)

V− = −1

2
r∂t − ζ∂r −

1

2
θ2∂θ1 (B16)

V+ = −2tr∂t − 2ζr∂ζ − (r2 + 4ζt)∂r − r(θ1∂θ1 + θ2∂θ2) − 2tθ2∂θ1 − 2ζθ1∂θ2 − 2xr (B17)

W = −2ζ2∂ζ − 2ζ(r∂r + θ2∂θ2) − r2

2
∂t − rθ2∂θ1 − 2xζ (B18)

Z̄1
0 = −1

2

(
ζ∂θ2 +

1

2
r∂θ1

)
(B19)

Z̄2
0 = −1

2

(
ζ(θ2∂ζ + θ1∂r) +

1

2
θ2r∂r +

1

2
rθ1∂t +

1

2
θ1θ2∂θ1 + xθ2

)
. (B20)
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