Problem Set XII

Advanced Statistical Physics - SoSe 2017
Due: Tuesday, June 27, before the lecture

Prof. Dr. Klaus Kroy

Exercise 1. Langevin equation

Consider the 1-dimensional Langevin equation

$$
m \dot{v}(t)+\zeta v(t)=\xi(t)
$$

as a model for a Brownian particle, where $\xi(t)$ is a Gaussian random force, for which $\langle\xi(t)\rangle=$ 0 and $\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=2 \zeta k_{\mathrm{B}} T \delta\left(t-t^{\prime}\right)$ holds.
1.1 Determine $v(t)$ for the initial condition $v(t=0)=v_{0}$. Calculate the conditional average values $\langle v(t)\rangle_{v_{0}}$ and $\left\langle v(t) v\left(t^{\prime}\right)\right\rangle_{v_{0}}$, and sketch them as a function of t. (4 P.)
1.2 Show that the steady state is reached for long times $t, t^{\prime} \gg m / \zeta$, that is, the initial condition is "forgotten", the velocity correlation function becomes time-translation invariant, and the equipartition theorem is recovered. ($2 \mathbf{P}$.)
1.3 Calculate the mean position $\langle x(t)\rangle_{v_{0} x_{0}}$ of a Brownian particle, that starts with the velocity $v(t=0)=v_{0}$ at $x(t=0)=x_{0}$, and the mean-square displacement $\Delta x\left(t, t^{\prime}\right) \equiv$ $\left\langle\left[x(t)-x\left(t^{\prime}\right)\right]^{2}\right\rangle_{v_{0}}$ for $t-t^{\prime}>0$. Determine the variance $\Delta_{x}(t) \equiv\left\langle[x(t)-\langle x(t)\rangle]^{2}\right\rangle$ by reducing it to known quantities. (3 P.)
1.4* Analyze the long-time behavior $\left(t, t^{\prime} \gg m / \zeta\right)$ of $\Delta x\left(t, t^{\prime}\right)$ and distinguish the cases $\left|t-t^{\prime}\right| \gg m / \zeta$ and $\left|t-t^{\prime}\right| \ll m / \zeta$. Show that the diffusion coefficient defined via a reasonable limit fulfills the Einstein relation. ($+\mathbf{3} \mathbf{P}$.)

