Problem Set XII

Advanced Statistical Physics – SoSe 2017

Due: Tuesday, June 27, before the lecture

PROF. DR. KLAUS KROY

9 (+3) P.

Exercise 1. Langevin equation

Consider the 1-dimensional Langevin equation

$$m\dot{v}(t) + \zeta v(t) = \xi(t)$$

as a model for a Brownian particle, where $\xi(t)$ is a Gaussian random force, for which $\langle \xi(t) \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = 2\zeta k_{\rm B}T\delta(t-t')$ holds.

- 1.1 Determine v(t) for the initial condition $v(t = 0) = v_0$. Calculate the conditional average values $\langle v(t) \rangle_{v_0}$ and $\langle v(t)v(t') \rangle_{v_0}$, and sketch them as a function of t. (4 P.)
- 1.2 Show that the steady state is reached for long times $t, t' \gg m/\zeta$, that is, the initial condition is "forgotten", the velocity correlation function becomes time-translation invariant, and the equipartition theorem is recovered. (2 P.)
- 1.3 Calculate the mean position $\langle x(t) \rangle_{v_0 x_0}$ of a Brownian particle, that starts with the velocity $v(t=0) = v_0$ at $x(t=0) = x_0$, and the mean-square displacement $\Delta x(t,t') \equiv \langle [x(t) x(t')]^2 \rangle_{v_0}$ for t t' > 0. Determine the variance $\Delta_x(t) \equiv \langle [x(t) \langle x(t) \rangle]^2 \rangle$ by reducing it to known quantities. (3 P.)
- 1.4* Analyze the long-time behavior $(t, t' \gg m/\zeta)$ of $\Delta x(t, t')$ and distinguish the cases $|t t'| \gg m/\zeta$ and $|t t'| \ll m/\zeta$. Show that the diffusion coefficient defined via a reasonable limit fulfills the Einstein relation. (+3 P.)