Problem Set IX

Advanced Statistical Physics - SoSe 2017
Due: Tuesday, June 6, before the lecture

Prof. Dr. Klaus Kroy

Exercise 1. 1d-Ising model

The Hamiltonian of the one-dimensional Ising model for N spins $\left(s_{i}= \pm 1, i=1, \ldots, N\right)$ with open boundary conditions is given by

$$
H=-\sum_{i=1}^{N-1} J_{i} s_{i} s_{i+1} .
$$

J_{i} is the interaction energy of the neighboring spins at i and $i+1$.
1.1 Calculate the partition sum

$$
Z_{N}=\sum_{\{\mathbf{s}\}} e^{-H(\{\mathbf{s}\}) /\left(k_{B} T\right)}
$$

by deriving a recurrence relation between Z_{N} and Z_{N+1}. Determine Z_{N} for the common special case $J_{i} \equiv J \forall i$.
1.2 Calculate the spin correlation function $\left\langle s_{i} s_{i+j}\right\rangle$ and specialize the result again for $J_{i} \equiv J \forall i$.
1.3 Show that the spontaneous magnetization $M_{s}=\langle s\rangle$ (for homogeneous interactions $J_{i} \equiv J$) can only take two values for the infinitely large system:

$$
M_{s}(T)=\left\{\begin{array}{ll}
0, & T>0 \\
1, & T=0
\end{array} .\right.
$$

Hint: Use the ansatz $h(r)=r^{-\alpha} \mathrm{e}^{-r / \xi}$. Make use of $\left\langle s_{i} s_{i+j}\right\rangle \xrightarrow{j \rightarrow \infty}\langle s\rangle^{2}$.

Exercise 2. Magnet and scaling hypothesis

Consider a ferromagnet with magnetizaion work per volume $\delta w=\delta W / V=\mu_{0} H \mathrm{~d} M$, and assume the internal energy per volume $u=u(T, M)$ and the magnetization $M=M(T, H)$ to be given.
2.1 Show that the specific heats at constant M and H obey the thermodynamic relation

$$
\begin{equation*}
c_{M}-c_{H}=\mu_{0} T\left(\frac{\partial H}{\partial T}\right)_{M}\left(\frac{\partial M}{\partial T}\right)_{H} . \tag{1}
\end{equation*}
$$

Hint: Use appropriate Maxwell relations.
2.2 Calculate $c_{M}-c_{H}$ using the equation of state (for small $H, M \geq 0$)

$$
\begin{equation*}
H=\frac{1}{C}\left(T-T_{c}\right) M+b M^{3}, \tag{2}
\end{equation*}
$$

where C, T_{c} and b are positive constants.
2.3 Use the result from 2.2 to show that $c_{M} / c_{H}<1$ holds for $T \rightarrow T_{c}^{(-)}$.
2.4 Show that the equation 1 can be written as

$$
c_{H}-c_{M}=\mu_{0} T\left(\frac{\partial M}{\partial T}\right)_{H}^{2}\left(\frac{\partial M}{\partial H}\right)_{T}^{-1}
$$

and use this to derive the exponent exponent relation $2 \beta+\gamma+\alpha=2$ assuming that the inequality shown in 2.3 is valid.
2.5 Assume that the singular part of the generalized free energy $\mathcal{F}_{s}(t, h)$ of a magnet is 2 times continuously differentiable and satisfies the generalized homogeneity relation

$$
\mathcal{F}_{s}(t, h)=\lambda^{-1} \mathcal{F}_{s}\left(\lambda^{a_{t}} t, \lambda^{a_{h}} h\right),
$$

where λ is a positive scale factor, $t=\left(T-T_{c}\right) / T_{c}$ and h an external magnetic field. Express the critical exponents α, β and γ in terms of a_{t} and a_{h} and derive the exponent relation obtained in 2.4.

