Problem Set IV

Advanced Statistical Physics - SoSe 2017
Due: Tuesday, May 2, before the lecture

Prof. Dr. Klaus Kroy

Exercise 1. Volume of a 4-dimensional spherical shell
The volume of high-dimensional bodies or of bodies with complicated shapes can conveniently be calculated with Monte-Carlo methods. However, one needs an algorithm that is able to decide whether a given point belongs to the body or not.
1.1 Find by analytical calculations the volume of the 4 -dimensional spherical shell that is defined by $0.8 \leq R \leq 1.0$, where R is the radius of the sphere. ($2 \mathbf{P}$.)
Hint: Use the formula for the volume of a 3-dimensional sphere and apply Cavalieri's principle.
1.2 Write a small Monte Carlo simulation code to estimate this volume. Plot the estimated volume for increasing number of points against the analytical result. (2 P.)
Hint: Pick random numbers equally distributed within a 4 -dimensional box of side length R and check whether they are inside or outside the spherical shell.

Exercise 2. Depletion interactions

2.1 Use the low-density approximation for $\Delta w\left(r_{12}\right)$ given in the lecture to calculate the effective interaction potential of two test spheres with diameter σ_{2} dissolved in a dilute fluid of hard spheres with diameter σ_{1}. Consider in particular the marginal case $\sigma_{1} \ll \sigma_{2}$. For this case, sketch the potential and indicate its characteristic scales. (4 P.)
2.2 Give a physical reason for the effective attraction between the test spheres. (2 P.)
2.3 Consider three test spheres in the hard-sphere fluid. Which value may the ratio of the radii σ_{1} / σ_{2} not exceed, so that the depletion interactions can be represented by a pair potential $\Delta w\left(r_{12}\right)$? ($\mathbf{2} \mathbf{P}$.)
2.4 Which qualitative changes do you expect for higher densities? Sketch $\Delta w(r)$ and indicate the scales. (2 P.)
Hint: Consider first the case $\sigma_{1}=\sigma_{2}$, for which you know the qualitative form of $g(r)$.

