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Introduction and overview

In condensed matter physics there has been a long-standing interest in the properties
of transition metal oxide compounds. In these systems the 3d-shell of the transition
metal ion is only partially filled. Since the 3d-orbitals are nearly degenerate, this can
give rise to an additional electronic degree of freedom next to charge and spin, where an
electron can occupy one of the different orbitals. Different mechanisms of interaction
can then lead to global, cooperative effects of orbital ordering. Since orbitals extend in
real space, the Hamiltonians describing orbital-orbital interactions are highly anisotropic
and frustrated. In the case of Kugel-Khomskii superexchange interactions, the orbital
degrees of freedom appear as quantum pseudo-spin 1/2 operators in the Hamiltonian. If
the phonon-mediated Jahn-Teller effect dominates, the operators are basically classical
pseudo-spins [1, 2].

In the case of three-fold degenerate t2g-orbitals, which are present for instance in
compounds with Ti3+ or V3+ ions, the orbital-interaction can be described by the
compass model [3]. While the compass model is closely related to the well-studied O(n)
and Heisenberg lattice spin models of statistical physics, it does not have an ordered
phase with a finite magnetization [4]. Competing interactions in different directions,
however, allow for long-ranged directional ordering. The angular dependence of the
interaction is qualitatively similar to a set of magnetic dipoles—or compass needles—
arranged in a square or cubic lattice.

The quantum compass model has furthermore received increased attention in recent
years because in the field of topological quantum computing it may serve to protect
qubits from decoherence [5, 6]. The model can be realized in the form of arrays of
superconducting Josephson junctions, which have already been implemented successfully
in experiments [7].

Earlier Monte Carlo studies have established the existence of a continuous thermal
phase transition in both the classical and the quantum variation of the two-dimensional
compass model, where a directionally ordered state is realized at low temperatures [8–10].
These findings have been confirmed by high-temperature series expansions for the two-
dimensional quantum model, but with the same method no signs of a finite-temperature
phase transition could be found in the three-dimensional quantum model [11].

For this diploma thesis I have set out to analyze the three-dimensional classical
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Introduction and overview

compass model by the means of Monte Carlo simulations to search for a directional
ordering transition and to understand its properties if it exists. In a preliminary study
I have also re-examined the transition in the two-dimensional model. The compass
model features high degeneracy, long autocorrelation times in simulations and strong
finite-size effects. For these reasons a considerable methodical effort is required to obtain
quantitative results. My main emphasis in this thesis is on the numerical methods that I
have applied to this end. The thesis is organized in the following way:

In the first chapter a brief introduction into the formalism of equilibrium statistical
physics, a short discussion of phase transitions and a presentation of the compass model
and its symmetries are given.

The second chapter motivates and explains the methodology of Markov chain Monte
Carlo computer simulations and discusses the effects of statistical correlations and how
to account for them.

In the third chapter the concrete numerical methods used in this thesis are explained
in detail. These include special screw-periodic boundary conditions, a local and a cluster
update, parallel tempering and multiple histogram reweighting. Especially for the latter
two points I present and compare various different approaches. In the context of multiple
histogram reweighting, interesting effects in the structure of the statistical uncertainties
of individual histogram bins have been found. These are described in appendix B.

In chapter four my results for the two-dimensional model are presented. They agree
with those found in the literature.

Then chapter five gives the results found for the three-dimensional classical compass
model. In contrast to the earlier publication on the quantum model, I have found a
directional ordering phase transition, which appears to be of a first-order nature.

Finally in chapter six the results obtained in this thesis are summarized in a short
form.
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1 Statistical physics and the compass model

1.1 Fundamentals of equilibrium statistical physics

Macroscopic physical systems consisting of many particles cannot be described by
specifying the microscopic states of all particles. That would require the solution of
an intractably high number of coupled equations of motion. Also experimentally the
complete microscopic information can never be acquired. But with the formalisms and
methods of statistical physics the gross properties, described by thermodynamic observ-
ables like the internal energy, of such systems can often be described in a probabilistic
manner. The expected behavior is derived statistically from the microscopic interactions
of the components, which are encoded in the Hamiltonian H. Here I can only give a
concise presentation of some fundamental concepts of statistical physics. For a more
detailed introduction see for instance the (German language) textbooks [12–14].

The following discussion will be limited to systems of fixed particle number in contact
with a heat bath at constant temperature T that have relaxed into thermal equilibrium.
Their macroscopic properties no longer change, although there are still microscopic
fluctuations. Such a system can then be described in the canonical ensemble and the
probability for it to be in a microstate x is given by the Boltzmann distribution

Peq(x) =
1
Z e−βH(x), (1.1)

which only depends on the energy E = H(x). Here β = 1/kBT is the inverse temperature
with and the normalizing constant Z is the partition function, which is given by

Z =
∫

dxe−βH(x) =
∫

dEΩ(E)e−βE, (1.2)

where in the first part the high-dimensional integral covers all possible microstates x
and in the second part the energy density of states Ω(E) has been introduced to write Z
in the form of a one-dimensional integral over the energy. The expectation values of an
observable O is given by

〈O〉 = 1
Z
∫

dxO(x)e−βH(x) =
1
Z
∫

dE〈O〉Ee−βE, (1.3)
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1 Statistical physics and the compass model

where in the second part

〈O〉E =
1

Ω(E)

∫
dxO(x)δ(H(x)− E) (1.4)

has been set.
From the partition function Z all thermodynamic state variables can be derived. The

internal energy U = 〈E〉 is

〈E〉 = 1
Z
∫

dxH(x)e−βH(x) =
1
Z
∫

dxH(x)e−βH(x) = − 1
Z
∫

dx
∂

∂β
e−βH(x)

= − 1
Z

∂Z
∂β

= −∂ lnZ
∂β

. (1.5)

The heat capacity is given by the first derivative of U:

C =
∂U
∂T

= −kBβ2 ∂U
∂β

= kBβ2 ∂2 lnZ
∂β2 . (1.6)

In analogy to Eq. (1.5) one can calculate 〈E2〉 = 1
Z

∂2Z
∂β2 and express the heat capacity as

C = kBβ2

[
1
Z

∂2Z
∂β2 −

(
1
Z

∂Z
∂β

)2
]
= kBβ2 [〈E2〉 − 〈E〉2

]
= kBβ2〈[E− 〈E〉]2〉, (1.7)

which relates it to the energy fluctuations. Moreover, C is related to the entropy S:

C = T
∂S
∂T

= −β
∂S
∂β

, (1.8)

which by integration with respect to β and by setting S(T = 0) = 0 yields

S = −kBβ
∂ lnZ

∂β
+ kB lnZ . (1.9)

In combination with Eq. (1.5) an expression for the free energy F can be stated in relation
to the partition function:

F = U − TS = − 1
β

lnZ . (1.10)

In the canonical ensemble F is the thermodynamic potential that is minimized in thermal
equilibrium.
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1.2 Phase transitions and finite-size scaling

1.2 Phase transitions and finite-size scaling

Phase transitions are characterized by singularities in a thermodynamic potential such
as the free energy. If there is a finite discontinuity in a first derivative of the potential at
an inverse temperature β0, a thermal phase transition is classified as first-order. If the
first derivative is continuous, but discontinuities or infinite divergences appear in second
partial derivatives, the transition is called second-order, continuous or critical.

The partition function of finite systems is always analytic. Therefore, thermodynamic
potentials derived from it do not show discontinuities. However, by the means of finite-
size scaling theory properties of a phase transition occurring in the thermodynamic limit
can be extrapolated from the behavior of finite systems.

For a more detailed account of the theory of phase transitions than I can give here see
the standard textbooks on statistical physics or Stanley’s introduction [15].

1.2.1 Order parameters

A characteristic feature of an order-disorder transition is the breaking of symmetries,
which are present in the high-temperature phase, at low temperatures. Simultaneously,
order increases and entropy is reduced.

To describe the ordering it is useful to introduce an order parameter φ, which can be
taken as an observable that is zero in the disordered phase and which takes up a finite
value in the ordered phase. If the Hamiltonian H does not already contain a term in φ,
one can introduce a linear “perturbation” term to H:

Hh = H− hφ. (1.11)

In this way φ is the conjugate variable coupling to a virtual field h of fixed value. The
expectation value of φ can then be expressed as a first derivative of the free energy:

〈φ〉 = 1
Z
∫

dxφ(x)e−βHh(x) =
1

βZ
∂

∂h

∫
dxe−βHh(x) =

1
β

∂ lnZh

∂h
= −∂Fh

∂h
. (1.12)

The second derivative can be calculated akin to the heat capacity in Eq. (1.7):

∂2Fh

∂h2 = −∂〈φ〉
∂h

= −β[〈φ2〉 − 〈φ〉2]. (1.13)

This gives rise to the definition of the susceptibility of φ to h, which is a measure for the
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1 Statistical physics and the compass model

fluctuations of φ:

χ =
∂〈φ〉
∂h

= −∂2Fh

∂h2 = β[〈φ2〉 − 〈φ〉2]. (1.14)

After having taken the derivatives, h may be set to zero to make it disappear from the
Hamiltonian.

1.2.2 First-order transitions

A first-order phase transition is indicated by a finite jump in the energy or the order
parameter φ at the transition point β0, which is caused by the coexistence of two phases.
If β is varied across β0, effects of hysteresis can be observed, which are brought about by
the metastability of the phases. At first-order transitions the spatial correlation length ξ

stays finite.
In the thermodynamic limit the heat capacity C and the order parameter susceptibility

χ show a finite jump. This cannot be observed in finite systems, where C and χ show
narrow peaks if the system is large enough. If one took the formal derivative of the
discontinuous functions E(β) or φ(β) of an infinite system, one would obtain δ-function
singularities. The peaks in finite systems are the rounded residuals of those.

For an overview over the finite-size scaling theory of first-order transitions see the
review [16] and let me here just state the central results for the scaling of the inverse
transition temperature β0. Pseudo-transition temperatures β0(N) for finite systems of
size N can be defined by the locations of the maxima of χ and C or the minima of the
Binder parameter

Q2 = 1− 1
3
〈φ4〉
〈φ2〉2 . (1.15)

For all definitions of β0(N) the expected dominating scaling behavior is the following:

β0(N) = β0 +
a
N

+ · · · , (1.16)

which allows the extrapolation of β0. Here the parameter a depends on the studied
quantity.
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1.2 Phase transitions and finite-size scaling

1.2.3 Continuous transitions

Continuous phase transitions feature a divergence of the spatial correlation length ξ at
the critical temperature Tc = 1/kBβc. Near Tc the power law

ξ ∝ |t|−ν + · · · (1.17)

with the reduced temperature t = T−Tc
Tc

and the critical exponent ν describes the behavior
of ξ. At Tc fluctuations become important at all length scales and the singular behaviors
of thermodynamic quantities are also described by relations with critical exponents such
as

φ ∝ |t|β + · · · , t < 0, (1.18)

χ ∝ |t|−γ + · · · , (1.19)

C− C0 ∝ |t|−α + · · · . (1.20)

Being measures for fluctuations, ξ and C diverge at Tc. The critical behavior defined
by these exponents is the same for many systems. For systems with short-ranged
interactions they are assumed to depend only on the spatial dimension of the system
and the symmetry of the order parameter. In this way different physical systems can be
grouped into universality classes.

In finite systems the correlation length ξ cannot diverge as it is limited by the linear
system size L. According to finite-size scaling theory, the same power laws still hold, but
L replaces ξ near Tc, so that

|t| ∝ L−1/ν + · · · . (1.21)

To leading order one then has the scaling laws

φ(L) ∝ L−β/ν + · · · , (1.22)

χ(L) ∝ Lγ/ν + · · · , (1.23)

C = C0 + aLα/ν + · · · (1.24)

and the locations of the finite maxima of χ and C scale according to

Tmax(L) = Tc + aL−1/ν + · · · . (1.25)
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1 Statistical physics and the compass model

1.3 The classical compass model

Lattice spin models with local interactions like the q-state Potts models and O(n) models
such as the Ising, xy and classical Heisenberg models have been very important in the
development of the theory of phase transitions and of various analytical and numerical
methods. The key difference of the compass models to these well-studied models is an
inherent coupling of real space symmetry, realized by the point group of the lattice, to
the symmetry of the interactions encoded in the Hamiltonian. In the O(n) models the
lattice symmetry only defines which sites are linked with each other and hence which
pairs of spins interact. In the compass model, on the other hand, it also enters in the
pair-wise interaction terms so that the lattice anisotropy is reflected in spin space.

In d spatial dimensions the compass model is defined on a simple hypercubic lattice
of size N = Ld with the Hamiltonian

H =
N

∑
i=1

d

∑
k=1

Jksk
i sk

i+k̂. (1.26)

Here sk
i is the k-th component of a spin si at lattice site i. Jk is a coupling constant

depending on the lattice direction k. The nearest neighbor of site i in the k-th direction
is indicated by i + k̂. Two spins on sites neighboring in direction k only interact in
their k-th components. In this sense the interaction is one-dimensional. In the classical
compass model the constituent spins are represented by vectors on the unit hypersphere
in d-dimensional space: si ∈ Sd−1.

The discussion in this thesis will be limited to equal coupling constants in every
direction: Jk ≡ J. The two-dimensional model on a square lattice of size N = L× L is in
this case defined by the Hamiltonian

H(2D) = J
N

∑
i=1

[
sx

i sx
i+x̂ + sy

i sy
i+ŷ

]
. (1.27)

Each spin si ∈ S1 can be parametrized by a polar angle ϕi ∈ [0, 2π):

si = s(ϕi) =

(
sx

i

sy
i

)
=

(
cos ϕi

sin ϕi

)
. (1.28)

In direct extension the three-dimensional model on the cubic lattice of size N = L× L× L
is defined by the Hamiltonian

H(3D) = J
N

∑
i=1

[
sx

i sx
i+x̂ + sy

i sy
i+ŷ + sz

i sz
i+ẑ

]
, (1.29)
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1.3 The classical compass model

where the spins si ∈ S2 can be parametrized by azimuthal and polar angles θi ∈ [0, π]

and ϕi ∈ [0, 2π):

si = s(θi, ϕi) =




sx
i

sy
i

sz
i


 =




cos ϕi sin θi

sin ϕi sin θi

cos θi


 . (1.30)

In this work a negative coupling constant of J = −1 corresponding to ferromagnetic
interactions has been chosen. As long as the linear lattice size L is taken even, the sign is
not important on periodic lattices. The lattice is then bipartite: It can be divided into two
disjoint sublattices such that within each sublattice no sites are linked with each other.
The bipartition is realized by a checkerboard decomposition or its three-dimensional
generalization. If a coupling sign J > 0 is chosen, one may then perform a simple
canonical transformation by multiplying each spin in one sublattice by a factor of −1
and recover the same energy.

The classical compass models correspond to taking the limit of large spin S of the
quantum mechanical compass models, where the spins would be represented by S = 1/2
operators

si =
h̄
2
(σx, σz) for d = 2, (1.31)

si =
h̄
2
(σx, σy, σz) for d = 3 (1.32)

with the Pauli matrices σk.

1.3.1 Symmetries and degeneracies

Due to the coupling of spins and lattice there is no global continuous rotational symmetry
of the spins like in the O(n) models. But the two- and three-dimensional classical com-
pass model Hamiltonians remain invariant under a number of discrete transformations
if open or periodic boundary conditions are assumed:

1. a) H(2D) remains invariant under a reflection of all spins:

(sx
i , sy

i )→ (sy
i , sx

i ) for all sites i. (1.33)

This is a Z2 symmetry.

b) In three dimensions one may choose any plane of the N = L3 cubic lattice and
reflect all spins situated in that plane. Accordingly, H(3D) remains invariant

9



1 Statistical physics and the compass model

under any of the following transformations:

(sy
i , sz

i )→ (sz
i , sx

i ) for all sites i with the same x-coordinate,

(sx
i , sz

i )→ (sz
i , sx

i ) for all sites i with the same y-coordinate,

(sx
i , sy

i )→ (sy
i , sx

i ) for all sites i with the same z-coordinate, (1.34)

where in each case the remaining third component is left unchanged. This
corresponds to the (Z2)3L symmetry group.

2. Along each chain parallel to the lattice axis k the k-th component of each spin may
be flipped, while the other components are left unchanged. Depending on the
dimension d, the following transformations are symmetries:

a) H(2D) is symmetric under any spin flip transformation of one of the following
forms:

sx
i → −sx

i for all sites i with the same y-coordinate,

sy
i → −sy

i for all sites i with the same x-coordinate, (1.35)

which in combination gives a (Z2)2L symmetry.

b) Due to the added third dimensionH(3D) is invariant under any of the following
spin flip symmetry operations:

sx
i → −sx

i for all sites i with the same y- and z-coordinates,

sy
i → −sy

i for all sites i with the same x- and z-coordinates,

sz
i → −sz

i for all sites i with the same x- and y-coordinates. (1.36)

The symmetry group is (Z2)3L2
.

In the literature these symmetries are called “gauge-like”, standing between the
global symmetries of O(n) models and local gauge symmetries [4, 17].

As a consequence of these discrete symmetries each state of the two-dimensional system
is at least 22L+1-fold degenerate. In the three-dimensional compass model the symmetries
lead to at least a 23(L2+L)-fold degeneracy of each state.

For the ground states of the classical compass models there is an additional continuous
symmetry since any constant spin field si ≡ s is a ground state. This can be seen by first
noting that for any spin si the sum ∑d

k=1(s
k
i )

2 = 1 is a constant. Hence one can construct

10



1.3 The classical compass model

a Hamiltonian H′, which is equal to H of Eq. (1.26) up to an irrelevant additive constant:

H′ = −1
2

N

∑
i=1

d

∑
k=1

Jk[sk
i − sk

i+k̂]
2

=
N

∑
i=1

d

∑
k=1

[Jksk
i sk

i+k̂ −
1
2

Jk((sk
i )

2 + (sk
i+k̂)

2)] = H− JkN (1.37)

Clearly H′ is minimized by any constant spin field if the Jk have negative signs.

1.3.2 Ordering

It has been shown that in the compass model the expectation value of any local quantity
that is not invariant under the one-dimensional flipping symmetries (1.35) and (1.36)
vanishes at any finite temperature [4]. For this reason one has 〈si〉 = 0 at any site i. This
precludes global magnetic ordering: 〈m〉 = 〈| 1

N ∑i si|〉 ≡ 0 at any temperature. However,
one can construct quantities that are invariant under these symmetries, for instance
〈sx

i sx
i+x̂〉, 〈s

y
i sy

i+ŷ〉 and 〈sz
i sz

i+ẑ〉. Order parameters can be constructed from combinations
of such expressions. These order parameters measure directional ordering characterized
by long-ranged correlations in the direction of fluctuations in spin and lattice spaces,
even though magnetic ordering is absent. Order is realized by linear spin alignment
parallel to the lattice axes.

A possible choice for the order parameter for the two-dimensional compass model is

D =
1
N

∣∣∣∣∣J
N

∑
i=1

(
sx

i sx
i+x̂ − sy

i sy
i+ŷ

)∣∣∣∣∣ =
1
N
∣∣Ex − Ey

∣∣ (1.38)

where Ek = J ∑N
i=1 sk

i sk
i+k̂

is the total bond energy along lattice direction k. An energy
difference between bond directions directly shows a broken lattice rotation symmetry.
Such a directional energy excess is measured by D. If one has D > 0, the system has
long-ranged directional order; D = 0 corresponds to a disordered state. Previous Monte
Carlo studies [8–10] have shown that there is a temperature-driven continuous phase
transition from a high-temperature disordered phase to an directionally ordered phase at
low temperatures, which apparently lies in the universality class of the two-dimensional
Ising model. These findings agree with the results presented in this work in chapter 4.

An extension of D to the third dimension, that has also been employed in Monte Carlo
studies of the related 120◦-model on cubic lattices [18], is

D =
1
N

√
(Ez − Ey)2 + (Ey − Ex)2 + (Ez − Ex)2. (1.39)

11



1 Statistical physics and the compass model

This is a measure for the averaged directional energy excess. In a disordered state one
has again D = 0; in a directionally ordered state D can have a maximum value of

√
2|J|,

which is realized if all spins are perfectly aligned with the same lattice axis. See chapter 5

for the results of a study of directional ordering in the three-dimensional model.
In Fig. 4.6 on p. 88 an illustration of typical directionally ordered and disordered

configurations of the two-dimensional compass model is given.
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2 Fundamentals of Monte Carlo simulations

In the following the fundamental computer simulation methods used in this work
shall be motivated and explained. This introductory presentation is mainly based on
the textbooks by Newman and Barkema [19], Berg [20], Landau and Binder [21] and
Krauth [22], as well as lecture notes by Janke [23], Katzgraber [24], Rummukainen [25]
and Weinzierl [26].

2.1 Numerical integration schemes

Few statistical systems are simple enough for their partition functions to be computable
analytically. Therefore one has to resort to numerical methods.

For systems with continuous degrees of freedom the partition function in Eq. (1.2) has
to be expressed by a multi-dimensional integral, which can only be solved analytically
in special cases. For example the phase space of the N-spin three-dimensional compass
model has an dimension of d = 2N and the determination of its partition function
requires the evaluation of the integral

Z =
∫ d(cos θ1)

2

∫ dϕ1

2π
· · ·

∫ d(cos θN)

2

∫ dϕN

2π
e−βH(3D)({θi ,ϕi}) (2.1)

Such d-dimensional integrals could be solved by iteratively computing one-dimensional
integrals of the form

I =
b∫

a

dx f (x). (2.2)

The most simple scheme is to partition the interval [a, b] into M slices of equal width
δ = (b− a)/M and to interpolate the function f (x) to the k-th order in each slice, which
delivers an approximation of the integral as a discrete sum. To first order the midpoint rule
can be applied, where the area under f in the j-th slice is approximated by a rectangle of
width δ and height f ((xi + xi+1)/2). Then

I ≈
M−1

∑
i=0

δ · f
(

xi + xi+1

2

)
(2.3)

13



2 Fundamentals of Monte Carlo simulations

and for M → ∞ the sum converges to the true integral I. It can be shown that the
error due to the approximation of the function is in this case proportional to ∼ M−2.
Higher order approximations have better convergence properties. For instance quadratic
interpolation using Simpson’s rule has an error proportional to ∼ M−4. An overview
over more advanced integration schemes is given in Numerical Recipes [27].

With all these methods the error scales as ∼ M−n for some power n. If they are applied
to a d-dimensional integral, the partitioning has to be done independently in each space
component. Therefore the error for the total integral scales as ∼ M−n/d. Evidently
convergence becomes very slow for high dimensions d.

2.2 Simple sampling Monte Carlo

The integration of high-dimensional volumes can be made possible by so-called Monte
Carlo methods. This term encompasses a variety of procedures that employ random
variables to arrive at approximate solutions to mathematical problems.

The idea of simple sampling for the estimation of the integral of a function is to randomly
choose the points of evaluation. While the original problem of integration is purely
deterministic, this approach is inherently probabilistic and the results depend on the
random numbers taken and are therefore subject to statistical uncertainty. The important
difference to the approach outlined in the previous using a regularly spaced grid is that
this statistical error does no longer depend on the spatial dimension, which shall be
demonstrated in the following.

Consider the following d-dimensional integral of a function f

I =
b1∫

a1

dx1· · ·
bd∫

ad

dxd f (x1, . . . , xd) =
∫

V

dx f (x) (2.4)

with points x = (x1, . . . , xd) from the hyper-rectangle V =
{

x
∣∣ a1 ≤ b1, . . . , ad ≤ bd }.

For the Monte Carlo estimate of I first a sample of M randomly chosen points in V is
taken, which are denoted by { x1, . . . , xM }. Each xi is a realization of the d-dimensional
random variable X = (X1, . . . , Xd). For simple sampling the X j are taken independently
and uniformly distributed from [aj, bj]. Their probability density function is

pX j(x) =





1/(bj − aj), if x ∈ [aj, bj],

0, else.
(2.5)

Since the X j are independent, the probability density function of X is the joint probability
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2.2 Simple sampling Monte Carlo

density function of the X j:

pX(x) = pX1(x1) · · · pXd(xd). (2.6)

The evaluation of the function f (xi) at the randomly sampled points xi can then be
understood as the realization of a function of the random variable X: Y = f (X). The
expectation value of Y is

〈Y〉 =
∫

V

dxpX(x) f (x) =
1
V

∫

V

dx f (x) = I/V, (2.7)

where V also stands for the measure of the region of integration. Therefore 〈V ·Y〉 = I,
which makes V · f (X) an unbiased estimator for I. Furthermore the variance of Y is

σ2
Y = 〈Y2〉 − 〈Y〉2 =

1
V

∫

V

dx [ f (x)]2 −
[

I
V

]2

, (2.8)

and hence one has for the variance of V ·Y:

σ2
V·Y = V

∫

V

dx [ f (x)]2 − I2. (2.9)

The simple sampling Monte Carlo estimator of I can then be defined as the sample mean
of V · f (X) over M realizations xi of X:

IMC =
V
M
·

M

∑
i=1

f (xi) (2.10)

with an expectation value of

〈IMC〉 =
V
M
· 〈

M

∑
i=1

f (xi)〉 =
V
M
·M · 〈Y〉 = V

M
·M · I

V
= I. (2.11)

Its variance is

σ2
IMC

= Var

[
V
M
·

M

∑
i=1

f (xi)

]
=

1
M2

M

∑
i=1

σ2
V·Y =

1
M

σ2
V·Y. (2.12)

IMC is an unbiased estimator for I. To quantify its statistical uncertainty or “error” an
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2 Fundamentals of Monte Carlo simulations

unbiased estimate of σ2
IMC

is needed. An unbiased estimator of σ2
Y is the sample variance

s2
M[Y] =

1
M− 1




M

∑
i=1

f (xi)
2 −M

[
M

∑
i=1

f (xi)

M

]2

 . (2.13)

Thus an unbiased estimate of σ2
IMC

is

s2
M[IMC] =

V2

M
s2

M[Y] =
V2

M(M− 1)




M

∑
i=1

f (xi)
2 −

[
M

∑
i=1

f (xi)

M

]2

 . (2.14)

The square root of Eq. (2.14) can be taken as an estimate of the statistical uncertainty of
IMC. With the shorthands Ŷ = ∑M

i=1 f (xi)/M and Ŷ2 = ∑M
i=1 f (xi)

2/M it can be stated
as

δIMC = V ·

√
Ŷ2 − Ŷ2

M− 1
. (2.15)

The important result is that this error really does not depend on the spatial dimension
and scales merely as ∼ M−1/2. However, it must be stressed that with Monte Carlo
integration it is only possible to acquire a probabilistic error bound: One can only give a
probability that the estimate lies within a certain range of the true value.

While it is clear that Monte Carlo integration outperforms traditional integration
schemes for high dimensions, the presented approach of simple sampling still suffers
from very slow convergence of the estimates for the integral value and its uncertainty if
the variance of the integrand is large. As the domain of integration is sampled uniformly,
regions with little weight for the integral are sampled with the same probability as the
important regions, where the function has high values.

2.3 Importance sampling

To overcome the shortcomings of simple sampling a method is desirable that samples
the random points preferably in the region with the highest contribution to the result. In
doing so it is necessary to ensure that the sampling of random numbers is still done in a
manner which does not bias the result. A procedure complying with these requirements
is known as importance sampling.

If one takes a probability density function p(x) that still fulfills p(x) > 0 if and only if
x ∈ V and

∫
V dxp(x) = 1, but no longer has to be uniform, the integral of Eq. (2.4) can
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2.4 Markov chain Monte Carlo

be written as

I =
∫

V

dx f (x) =
∫

V

dx
f (x)
p(x)

p(x) = 〈 f /p〉p. (2.16)

So mathematically importance sampling amounts to a change of integration variables. A
generalization of Eq. (2.10) then gives a new estimator

IIS =
1
M

M

∑
i=1

f (yi)

p(yi)
, (2.17)

where the yi are now chosen p-distributed. Then the expectation value results as

〈IIS〉p =
1
M

M

∑
i=1

〈
f (yi)

p(yi)

〉

p
=

1
M

M

∑
i=1

∫

V

dx
f (x)
p(x)

p(x) = I. (2.18)

and the variance is

σ2
IIS

=
1
M

Var
[

f
p

]
=

1
M



∫

V

dx
(

f (x)
p(x)

)2

p(x)−


∫

V

dx
f (x)
p(x)

p(x)




2



=
1
M



∫

V

dx
f (x)2

p(x)
− I2


 . (2.19)

Here the effect of a good choice of p(x) is clear: IIS is minimized with p(x) = f (x)/I.
This is of course a rather theoretical result, as knowing I means having already solved
the problem at hand. Still, choosing p as close to f as it is practically possible leads to a
drastically reduced statistical error.

2.4 Markov chain Monte Carlo

Importance sampling of thermodynamic observables

As outlined in Sec. 1.1 the expectation value of an observable O in a statistical system is
given by

〈O〉 =
∫

dxO(x)e−βH(x)
∫

dx e−βH(x)
. (2.20)

If the phase space points xi are sampled with a probability distribution function P(x), the
important sampling estimator of Eq. (2.17) can be used in numerator and denominator
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2 Fundamentals of Monte Carlo simulations

to estimate 〈O〉:

Ô =
∑M

i=1O(xi)e−βH(xi)P(xi)
−1

∑M
i=1 e−βH(xi)P(xi)−1

. (2.21)

The ideal choice for P(x) is Peq(x) = e−βH(x)/Z since then Eq. (2.21) reduces to just the
sample mean

Ô =
1
M

M

∑
i=1
O(xi) = O, (2.22)

where the states xi are now sampled according to the Boltzmann distribution Peq.
The remaining problem is that the distribution Peq cannot be sampled directly. While

there are methods available to generate pseudo-random numbers from certain classes of
one-dimensional distributions (see Ref. [27]), no general-purpose method applicable to
high dimensions is known. Also, again the normalization constant in Peq, which is the
partition function Z , is unknown.

2.4.1 Markov processes

To sample Peq more involved schemes are necessary. The standard solutions rely on
Markov processes to produce the states to be sampled. A Markov process is a stochastic
process that generates a sequence of states x1, x2, . . . , xM in such a way that once the
system is in a state xm the next state xn is generated randomly in a fashion that only
depends on xm and xn. Formally the transition probability has to satisfy

W(xm → xn) = P(X = xn|X = xm). (2.23)

Thus in contrast to the previously presented sampling methods the sampled states are
no longer independent of each other. But a newly generated state depends only on the
previous one, not on the whole history of this trajectory in state space.

Here and in the following a discrete and finite state space is assumed to keep the
notation simple. While for continuous systems there are equivalent results, one should
keep in mind that in the context of Monte Carlo simulations all continuous systems are
eventually discretized for treatment in a computer, which can only deal with countable
sets of states.
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2.4 Markov chain Monte Carlo

If the transition probabilities satisfy the following conditions:

(i) W(xm → xn) ≥ 0 for all m, n, (2.24a)

(ii) ∑
n

W(xm → xn) = 1 for all m, (2.24b)

the W(xm → xn) form a stochastic matrix W. The sequence of states x1, x2, . . . generated
by the Markov process is also called a Markov chain. It has to be set up in a way
that regardless of the initial configuration x0 eventually the sequence will converge
towards a succession of states that appear with probabilities according to the Boltzmann
distribution. To achieve this two additional conditions have to be placed on the Markov
process: Ergodicity and detailed balance.

Ergodicity

The condition of ergodicity is the requirement that from a state xm any other state
xn can eventually be reached in the Markov chain. Some of the individual transition
probabilities may well be set to zero, but ultimately there must be a trajectory of non-zero
transition probabilities between any two states. If this were not the case, there would be
states xk that are never sampled, but in the Boltzmann distribution a non-zero probability
is assigned to every state.

Detailed balance

If a pseudo-time is measured in steps along a Markov chain, a state xm occurs at the
k’th time step with probability pm(k). The evolution of these probabilities in the Markov
process is described by a master equation for each state xm:

pm(k + 1) = pm(k) + ∑
n

pn(k)W(xn → xm)−∑
n

pm(k)W(xm → xn). (2.25)

The first term on the right hand side describes the rate of transitions into xm, the second
term describes the rate of transitions from xm into the other states. The goal is that
for k→ ∞ the probabilities pm(k) reach a stationary distribution corresponding to the
equilibrium distribution of the system. Requiring pm(k) = pm = const one has:

∑
n

pmW(xm → xn) = ∑
n

pnW(xn → xm). (2.26)

Eq. (2.26) is the condition of balance that has to be imposed on the transition probabilities
of the Markov process. Any set of transition probabilities W(xm → xn) that satisfies
Eq. (2.26) leads to a stationary distribution pm. However, as it turns out this condition
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2 Fundamentals of Monte Carlo simulations

is not strong enough to warrant that the probability distribution will tend to this
distribution pm from any initial state of the system.

Making use of condition (2.24b), Eq. (2.25) can be simplified to

pm(k + 1) = ∑
n

pn(k)W(xn → xm). (2.27)

Introducing the vector p(k) with the entries pn(k) and writing W for the stochastic
matrix formed by the W(xm → xn), this can be written as

p(k + 1) = W · p(k). (2.28)

If an equilibrium state p(∞) is reached by the process as k→ ∞, it can be characterized
as an eigenvector of W to the eigenvalue 1:

p(∞) = W · p(∞). (2.29)

Apart from this there also remains the possibility that the process reaches a limit circle, in
which the probability distribution p rotates around a set of different values. Then p(∞)

would satisfy

p(∞) = Wn · p(∞), (2.30)

where n is the length of this limit circle and p(∞) would be an eigenvector to an
eigenvalue which is a complex root of one.

The occurrence of limit circles besides the desired equilibrium distribution pm must
be avoided to make sure that the states generated by the Markov process will have the
right probability distribution. In order to achieve this a stronger condition than Eq. (2.26)
is enforced on the transition probabilities:

pmW(xm → xn) = pnW(xn → xm). (2.31)

This is the condition of detailed balance. By summing over n on both sides of Eq. (2.31),
Eq. (2.26) is recovered. So transition probabilities that fulfill detailed balance always
comply with the condition of balance. Condition (2.31) implies that the process has to be
reversible. As it forces transitions from xm to xn to be equally probable as transitions
from xn to xm, limit circles are prevented: In a limit circle at a particular time step there
would have to be more transitions into a certain state than out of it on average.

Once limit circles are excluded, it is straightforward to show that the system will
always reach p(∞) as k → ∞, if one accepts that since W is a stochastic matrix, the
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largest absolute value of its eigenvalues is one. Since limit circles are excluded this
eigenvalue has to be exactly one. Because of ergodicity there can only be one eigenvector
of eigenvalue 1 satisfying Eq. (2.29) because else the system would subdivide into more
than one mutually inaccessible subsets.

By iterating Eq. (2.28) from k = 0 one arrives at

p(k) = Wk · p(0), (2.32)

where the initial distribution p(0) can be expressed as a linear combination of the right
eigenvectors vi of W:

p(0) = ∑
i

µivi (2.33)

with λivi = W · vi, so that

p(k) = Wk ·∑
i

µivi = ∑
i

µiλ
k
i vi. (2.34)

Now as k → ∞, p(k) will be dominated by the largest eigenvalue λ0 of W. The
convergence is exponential.

As this eigenvalue is 1 and pertains to the unique stationary state p(∞), it is clear that
p(k) tends towards the equilibrium distribution of the system.

Choosing transition probabilities

By choosing transition probabilities that satisfy the condition of detailed balance (2.31) the
Markov process can be made to generate states distributed according to any distribution
pm. In thermal equilibrium they should follow the Boltzmann distribution, which forces
the transition probabilities to satisfy the following more specific condition of detailed
balance:

W(xm → xn)

W(xn → xm)
=

pn

pm
= e−β(En−Em) ≡ e−β∆E(xm→xn), (2.35)

where Em = H(xm) and En = H(xn) label the energies in the states xm and xn. Of
importance are only the relative energy differences ∆E between the states.

In the practical implementation of a Markov chain in a Monte Carlo simulation in
each step a new state xn has to be proposed based on an old state xm. Let g(xm → xn)

be the probability of this proposal and A(xm → xn) be the probability of acceptance of
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the new state. Then the transition probability can be expressed as

W(xm → xn) = g(xm → xn)A(xm → xn) (2.36)

In principle any choice of g(xm → xn) is valid as long as it does not break ergodicity and
the acceptance probabilities A(xm → xn) still satisfy detailed balance. However, there
may be concerns of performance in an actual simulation that make certain choices more
favorable than others.

Thermalization

If the Markov process has been set up correctly, one can start to generate a sequence
of states, beginning with some initial configuration x0. Eventually after sufficiently
many steps have been taken, equilibrium will be reached and one can start to take
measurements of observables to be used in estimations according to Eq. (2.22). The
period allowed for equilibration is also called the thermalization phase. Generally, the
question of how long one has to wait until thermalization is completed is not trivial.
It can be judged by monitoring the pseudo-time evolution of suitable observables,
which should converge to their constant behavior in equilibrium. To stay on the safe
side, this can be repeated for different initial conditions and different sets of pseudo-
random numbers used in the simulation. To warrant the correctness of the results
obtained in simulations, it is advisable to rather discard more samples than necessary for
equilibration than to risk starting the actual measurements too early. A rule of thumb,
that has been followed in this work, is to spend at least 10% of the simulation time in
the period of thermalization.

2.4.2 The Metropolis algorithm

A viable choice for the transition probabilities is given by the famous Metropolis algo-
rithm [28]. Here A(xm → xn) = min{1, e−β∆E(xm→xn)}, i.e.

A(xm → xn) =

{
e−β∆E(xm→xn), if ∆E > 0,

1, else.
(2.37)

If the update from xm to the proposed new state xn lowers the energy, it is always
accepted. Updates that increase the energy are accepted with a probability depending on
temperature. This can be understood as the influence of entropy. In thermal equilibrium
the free energy F = E− TS is minimized and not the internal energy E.

In the Metropolis algorithm the transition probabilities g(xm → xn) are chosen such
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that

g(xm → xn)

g(xn → xm)
= 1. (2.38)

It is then straightforward to see that the Metropolis transition probabilities satisfy the
condition of detailed balance (2.35):

W(xm → xn)

W(xn → xm)
=

g(xm → xn)A(xm → xn)

g(xn → xm)A(xn → xm)
=

A(xm → xn)

A(xn → xm)

=





1
e−β(−∆E)

, if ∆E ≤ 0

e−β∆E

1
, if ∆E > 0





= e−β∆E.
(2.39)

To avoid large energy differences ∆E > 0, which would lead to low acceptance prob-
abilities, the Metropolis algorithm is usually implemented as a local update algorithm:
In each Monte Carlo step only a single degree of freedom is altered. The g(xm → xn)

are taken equal for all states xn possible in this way and zero otherwise, automatically
satisfying Eq. (2.38). Thus no huge changes of the system configuration occur and the
energies before and after the update will be close. For a classical system of N spins si on
a lattice one would choose a site i0 in each step and propose only a change of the spin
si0 . A sequence of N such local updates is commonly called a Monte Carlo sweep and
can be thought of as an update of the whole spin system.

Besides the Metropolis update many other valid choices of transition probabilities
can be made, which may be more adapted to the problem at hand. For instance non-
local cluster algorithms and methods for generalized ensemble sampling can lead to
significantly improved performance. In chapter 3 several algorithms adapted to the
simulation of the classical compass model will be presented.

2.5 Statistical uncertainties and autocorrelations

As mentioned above the configurations which have been sampled in a Markov chain
are not independent of each other. Therefore observable measurements made from
these configurations are correlated. The statistical uncertain of estimates computed from
them are related to these correlations. An analysis of this connection for Monte Carlo
simulations has been proposed for the first time by Müller-Krumbhaar and Binder [29].
A recent general review is given by Janke [30].

The expectation value 〈O〉 of an observable O can be estimated by the sample mean
O = 1

M ∑M
i=1Oi of the values Oi = O(xi), which have been measured from the succes-
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sively sampled system configurations xi. O is a random variable and for finite sample
sizes M it fluctuates around the theoretically expected value 〈O〉. To assess the qual-
ity of the results obtained from a simulation, it is necessary to quantify the statistical
uncertainty caused by these fluctuations. An appropriate measure is the variance of O:

σ2
O = 〈[O − 〈O〉]2〉 = 〈O2〉 − 〈O〉2. (2.40)

It can be estimated by conducting many simulations with identical setup, which only
differ in the (pseudo-)random numbers that have been used. However, this approach is
often prohibited by the computational cost. Instead σ2

O can also be computed from the
series of measurements Oi taken in a single simulation:

σ2
O = 〈O2〉 − 〈O〉2 =

1
M2

〈[ M

∑
i=1
Oi

]2
〉
− 1

M2

[ M

∑
i=1
〈Oi〉

]2

=
1

M2

[ M

∑
i=1
〈O2

i 〉+
M

∑
i,j=1
i 6=j

〈OiOj〉
]
− 1

M2

[ M

∑
i=1
〈Oi〉2 +

M

∑
i,j=1
i 6=j

〈Oi〉〈Oj〉
]

=
1

M2

M

∑
i=1

[
〈O2

i 〉 − 〈Oi〉2
]
+

1
M2

M

∑
i,j=1
i 6=j

[
〈OiOj〉 − 〈Oi〉〈Oj〉

]
. (2.41)

Since in the first sum 〈Oi〉 = 〈O〉 and 〈O2
i 〉 = 〈O2〉 hold for all i and since the second

sum is symmetric in i and j, Eq. (2.41) can be rewritten as follows:

σ2
O =

1
M
[
〈O2

i 〉 − 〈Oi〉2
]
+

2
M2

M

∑
i=1

M−i

∑
t=1

[〈OiOi+t〉 − 〈Oi〉〈Oi+t〉]

=
1
M

σ2
Oi

+
2

M2

M

∑
i=1

M−i

∑
t=1

[
〈OiOi+t〉 − 〈Oi〉2

]
. (2.42)

Here the first term has been identified with the variance of Oi and in the second term
use of the identity 〈Oi+t〉 = 〈Oi〉 has been made. By reordering the remaining two sums
in the second term one obtains:

σ2
O =

1
M

σ2
Oi

+
2

M2

M−1

∑
t=1

M−t

∑
i=1

[
〈OiOi+t〉 − 〈Oi〉2

]
. (2.43)

The Oi are taken from an equilibrated Markov chain, which is the realization of a
stationary stochastic process. Hence there is pseudo-time translational invariance and
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the 〈OiOi+t〉 under the sum are equal for all i:

σ2
O =

1
M

σ2
Oi

+
2

M2

M−1

∑
t=1

(M− t)
[
〈O1O1+t〉 − 〈O1〉2

]
. (2.44)

With the introduction of the normalized autocorrelation function

CO(t) =
〈O1O1+t〉 − 〈O1〉2
〈O2

1〉 − 〈O1〉2
=
〈O1O1+t〉 − 〈O1〉2

σ2
Oi

(2.45)

Eq. (2.44) can be expressed as

σ2
O =

1
M

σ2
Oi

+
2
M

M−1

∑
t=1

(
M− t

M

)
σ2
Oi
· CO(t). (2.46)

By additionally introducing the integrated autocorrelation time

τO,int =
M

∑
t=1

(
1− t

M

)
· CO(t) (2.47)

Eq. (2.46) can be written as

σ2
O =

σ2
Oi

M
(1 + 2τO,int) =

σ2
Oi

M/gO
. (2.48)

The divisor gO ≡ 1 + 2τO,int can be understood as a statistical inefficiency:
For a series of uncorrelated measurements Oi one has CO(t) ≡ 0 and the variance of

the mean is equal to the variance of the individual measurements scaled by the total
number of measurements: σ2

O = σ2
Oi

/M.
In general however, data from a Markov Chain Monte Carlo simulation has temporal

correlations, which leads to gO > 1 and an amplification of the statistical uncertainty.
The variance can be compared to the uncorrelated case by writing Meff = M/gO for
the statistically effective size of the sample, which leads to σ2

O = σ2
Oi

/Meff. Only
measurements gO time steps apart are approximately uncorrelated.

By the central limit theorem the probability distribution of the mean value O will
assume a Gaussian distribution with a squared width of σ2

O in the asymptotic limit of
large M. The statistical uncertainty of O is usually given by the standard deviation or
standard error δO =

√
σ2
O. If the assumption of a Gaussian distribution is valid, 68.2%

of a set of equivalently performed simulations would give a mean value in the range
[O − δO,O + δO ] as a result, the so-called one-sigma interval.
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2 Fundamentals of Monte Carlo simulations

2.5.1 Critical and supercritical slowing down

For Markov processes the normalized autocorrelation function defined in Eq. (2.45) is
expected to decay exponentially for large time separations t:

CO(t) =
〈O1O1+t〉 − 〈O1〉2

σ2
Oi

t→∞−−→ ce−t/τO,exp , (2.49)

where c is some constant prefactor and the exponential autocorrelation time τO,exp is
defined. Typically at small values of t, additional modes contribute and the behavior of
CO(t) is not purely exponential. If the weight of those modes is not too high, τO,exp is
approximately equal to the integrated autocorrelation time τO,int defined in Eq. (2.47).

Close to the critical point of a continuous phase transition, typically the autocorrelation
time scales with the spatial correlation length ξ as

τO,exp ∝ min(L, ξ)z (2.50)

with a dynamical critical exponent z ≤ 0. In finite systems ξ is capped by the linear
system size L. Due to the divergence of ξ ∝ |T − Tc|−ν near the critical temperature in a
temperature-driven transition, the autocorrelation time diverges as well for T → Tc:

τO,exp ∝ |T − Tc|−νz. (2.51)

This effect is called critical slowing down.
The value of z depends strongly on the update algorithm used in a Monte Carlo

simulation. For a spin system simulated with local dynamics one usually has z ≈ 2.
Non-local algorithms adapted to the model, that for instance make use of cluster updates,
can have considerably lower values of z.

If a system which undergoes a first-order phase transition is simulated with Monte
Carlo methods, a different phenomenon appears due to the coexistence of multiple
phases at the finite size pseudo-transition point. In the course of the simulation the
system can switch from one metastable pure phase to the other, but to do so it must cross
a mixed-phase region in state space. The probability of configurations from that region
is exponentially suppressed in relation to the weight of the pure phases by an additional
Boltzmann factor e−2σLd−1

, where σ is the interface tension between the coexisting phases
and Ld−1 is the projected area of their interface. The factor 2 is assumed with periodic
boundary conditions, where the system topology enforces an even number of interfaces.

In a regular canonical simulation, the time spent between crossings of the suppressed
region scales in inverse proportion to its relative probability. Therefore the autocorrela-
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2.5 Statistical uncertainties and autocorrelations

tion time scales exponentially with the system size:

τO,exp ∝ e2σLd−1
. (2.52)

This effect is known as supercritical slowing down. In contrast to critical slowing down it
is caused directly by the shape of the probability distribution and cannot be overcome
by non-local updates. The impact of supercritical slowing down can however often be
reduced by methods such as multicanonical sampling[76, 77], in which adapted weights
are used to enhance the sampling of configurations with suppressed probabilities.

There is an immediate impact of high autocorrelation times on the effective sample
sizes in the statistical uncertainties of observable expectation values. Therefore it is clear
that special care in the choice and design of algorithms is necessary to obtain reliable
results in the vicinity of phase transitions.

2.5.2 Numerical estimation of autocorrelation times

To estimate the autocorrelation function from empirical time series data, the expectation
values in Eq. (2.44) can be replaced by mean values of the respective quantities:

ĈO(t) =
OiOi+t −O2

O2 −O2 . (2.53)

But for large time separations t the statistical uncertainty of this estimator becomes
strong and as a result empirically determined autocorrelation functions are usually
very noisy. This makes the determination of τO,exp by a fit to the exponential function
rather hard, as the range used must be limited both at low t to exclude the influence
of additional modes before the exponential decay sets in and at high t to exclude noisy
data.

Instead one usually resorts to estimating the integrated autocorrelation time τO,int.
Since CO(t) decays exponentially with t, the factor (1 − t/M) in Eq. (2.47), which
becomes important for high t, is usually left out. Also the sum is restricted by an upper
bound tmax to exclude contributions where statistical noise would dominate:

τ̂O,int(tmax) =
tmax

∑
t=1

ĈO(t). (2.54)

The upper limit tmax can be chosen by various approaches, for instance by self-consistently
cutting off the summation once e.g. tmax ≥ 6τ̂O,int(tmax). A simpler alternative, that is
independent of such a choice, is to stop accumulating to the sum once the autocorrelation
function crosses zero. Except for a few special situations negative values of the corre-
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2 Fundamentals of Monte Carlo simulations

lation function can be considered unphysical and their occurrence can be understood
as an indication of the dominance of statistical noise such that the remainder of the
autocorrelation function will be indistinguishable from zero.

2.5.3 The jackknife resampling method

For quantities that have not been measured directly in the simulation, but are computed
as functions of the observables or their moments, the previously outlined methods are
not sufficient to estimate their statistical uncertainties. Examples are the heat capacity
C = kBβ2〈(E − 〈E〉)2〉 or quantities obtained by a reweighting process like the one
introduced in Sec. 3.6. A systematic way to estimate the uncertainty of arbitrary functions
f (O(a), 〈O(a)〉, . . . ,O(b), 〈O(b)〉, . . . ) is the jackknife method. It works by dividing the time
series {O(a)

i ,O(b)
i , . . . }M

i=1 into NB blocks of length k � τ, which should be larger than
the autocorrelation times of all observables.

Then for j = 1, . . . , NB the quantity f is estimated from the data set that is obtained by
leaving out the j’th block and including all the other blocks. Thus from the original time
series a resampled data set of NB jackknife block estimates f̂ (j) is constructed. Each f̂ (j)

is computed from a sample of size M− k. Compared to a simple blocking or binning
scheme, where estimates would be computed directly on the small blocks of length k,
this approach reduces the biasing effects of small sample sizes.

The effect of temporal correlations is eliminated by the blocking procedure, but since
the same data is re-used NB − 1 times, there are still trivial correlations between the f̂ (j).
If these correlations were not present, an estimate for the squared statistical uncertainty
of f̂ would be given by the unbiased estimator for the variance of the mean of the f̂ (j):

σ̂2
f

′
=

1
NB(NB − 1)

NB

∑
j=1

( f̂ (j) − f (j)), (2.55)

where f (j) = 1
NB

∑NB
j=1 f̂ (j). To account for the trivial correlations, it has to be scaled

by a factor of (NB − 1)2, so that the final jackknife estimate for the squared statistical
uncertainty is:

δ̂2 f =
NB − 1

NB

NB

∑
j=1

( f̂ (j) − f (j)). (2.56)

Since the jackknife method generally over-estimates the statistical uncertainty, it can be
considered a relatively safe choice to control their magnitude. See Efron’s monograph [31]
for a detailed treatment of jackknife resampling.
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3 Methods applied to the compass model

3.1 Observables

The basic quantities measured in the Monte Carlo simulations of the classical compass
model in both two and three dimensions in this work are the total energy E and the
directional ordering parameter D introduced in Sec. 1.3.2. Writing Ex = J ∑N

i=1 sx
i sx

i+x̂,
Ey = J ∑N

i=1 sy
i sy

i+ŷ and Ez = J ∑N
i=1 sz

i sz
i+ẑ for the total directional bond energies, the

quantities to be measured are in two dimensions:

E(2D) = Ex + Ey,

D(2D) =
1
N
∣∣Ex − Ey

∣∣ (3.1)

and in three dimensions

E(3D) = Ex + Ey + Ez,

D(3D) =
1
N

√
(Ez − Ey)2 + (Ey − Ex)2 + (Ez − Ex)2. (3.2)

A number of derived quantities can be estimated from the measured time series of D
and E to help with the analysis of the phase transitions. Among these are the specific
heat capacity C/N, the susceptibility χ of D and the Binder parameter Q2 for D:

C/N =
kBβ2

N
[
〈E2〉 − 〈E〉2

]
,

χ = N
[
〈D2〉 − 〈D〉2

]
,

Q2 = 1− 1
3
〈D4〉
〈D2〉2 . (3.3)

The factor of N in the definition of χ is included to give the susceptibility per spin as
also D is an average over the lattice. Compared with the general definition (1.14) in
Sec. 1.2.1 the leading factor of β is omitted. This does not change the thermodynamic
limit extrapolated from the finite-size maxima of the susceptibility, but by experience
can improve the scaling behavior [32].
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3 Methods applied to the compass model

3.2 Choice of boundary conditions

Most simulations of statistical models on finite lattices are carried out with periodic
boundary conditions, where the topology of a torus is used. The assumption is that
compared with open or fixed boundary conditions this choice minimizes finite size
surface effects, which are irrelevant in the thermodynamic limit.

In previous studies of the two-dimensional classical compass model, however, periodic
boundary conditions have not turned out to be the ideal choice. In the directionally
ordered low-temperature phase the spins form essentially one-dimensional chains with
decoupled rows and columns of spins on the square lattice. With periodic boundary
conditions the spins tend to form closed aligned loops along the lattice. These excitations
are particularly stable against thermal fluctuations. In their studies Mishra et al. have no-
ticed such an effect spoiling the finite-size scaling with periodic boundary conditions [8]
and suggested that the reason may lie in the existence of a one-dimensional magnetic cor-
relation length ξ1D which exceeds the linear system size L at low temperatures. Wenzel
et al. have confirmed this claim [10].

As a solution the authors of Ref. [8] have adopted special fluctuating or annealed
boundary conditions. Here the sign of the coupling constants on the bonds along the
lattice boundaries is allowed to fluctuate thermally. In this way, one-dimensional chains
are effectively broken up. A disadvantage is that actually a different model is simulated,
although one can assume that the influence of these dLd−1 fluctuating bonds becomes
unimportant in the thermodynamic limit as N = Ld → ∞. However, no good finite-size
scaling theory is available for this type of boundary conditions.

As an alternative the authors of Ref. [10] have proposed screw-periodic boundary
conditions, which are a deformation of the torus topology of regular periodic boundary
conditions. In two dimensions they are defined by the following specification of nearest
neighbors of a site i = (x, y) in x- and y-directions:

(x, y) + x̂ =




(x + 1, y), if x < L− 1,

(0, [y + S] mod L), if x = L− 1,

(x, y) + ŷ =




(x, y + 1), if y < L− 1,

([x + S] mod L, 0), if y = L− 1.
(3.4)

The screw parameter S can be varied. If S is taken as one of the distinct divisors of L,
the lattice can be subdivided in x- and y-direction into S groups of sites (called “loops”),
which are linked as pairs of neighbors in that direction.

With S = 0 or S = L regular periodic boundary conditions are recovered. With S = 1
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3.2 Choice of boundary conditions

(a) PBC (b) SBC

Figure 3.1: Sketch of periodic (PBC) and screw-periodic boundary conditions (SBC) along the x-axis of a
two-dimensional lattice. In the SBC picture the link between the lower right and the upper left corner is
not shown. Equivalent boundary conditions are applied to the y-direction. Here a screw parameter of
S = 1 is used.

all sites are put into only one loop in each direction. In Fig. 3.1 these two cases are
illustrated. The power of screw-periodic boundary conditions lies in the fact that with a
sufficiently low choice of S, the loop length exceeds the magnetic correlation length ξ1D

already for small L. Hence, excitations of linear alignment are broken up more easily
than with regular periodic boundary conditions.

In chapter 5 it will become clear that also in the three-dimensional case regular periodic
boundary conditions are not the ideal choice. The above definition (3.4) can easily be
extended to have screw-periodic boundary conditions in three dimensions, for instance
by setting:

(x, y, z) + x̂ =




(x + 1, y, z), if x < L− 1,

(0, y, [z + S] mod L), if x = L− 1,

(x, y, z) + ŷ =




(x, y + 1, z), if y < L− 1,

([x + S] mod L, 0, z), if y = L− 1,

(x, y, z) + ẑ =




(x, y, z + 1), if z < L− 1,

(x, [y + S] mod L, 0), if z = L− 1.
(3.5)

In this way, lattice planes are connected with each other. The choice of screw-periodic
boundary conditions should not have an influence on the thermodynamic limit. But the
high degeneracy of finite system configurations is greatly reduced by the connection of
planes and chains, which lowers the number of available symmetries considerably from
the enumeration in Sec. 1.3.1.
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3 Methods applied to the compass model

3.3 Metropolis update

Since interactions in the compass model Hamiltonian

H = J
N

∑
i=1

d

∑
k=1

sk
i sk

i+k̂ (3.6)

are restricted to nearest neighbor pairs of spins, the use of a local spin update with the
Metropolis algorithm, that has already been introduced in general in Sec. 2.4.2, is an
obvious choice. The energy difference between the spin configurations before and after
the proposed update of a single spin sj → s′j can be evaluated locally:

∆E = H({ s1, . . . , s′j−1, sj, sj+1, . . . , sN })−H({ s1, . . . , sj−1, sj, sj+1, . . . , sN })

= J
d

∑
k=1

[
sk

j
′
sk

j+k̂ + sk
j
′
sk

j−k̂

]
− J

d

∑
k=1

[
sk

j sk
j+k̂ + sk

j sk
j−k̂

]

= J
d

∑
k=1

[
sk

j
′
(sk

j+k̂ + sk
j−k̂)− sk

j (s
k
j+k̂ + sk

j−k̂)
]

= J
d

∑
k=1

(sk
j
′ − sk

j )(s
k
j+k̂ + sk

j−k̂). (3.7)

One Monte Carlo step consists then of a sequential sweep of the lattice, i.e. updates
for all spins si are proposed in lexicographical order for i = 1, . . . , N. The spins to be
updated can be chosen by more elaborate schemes, e.g. by first visiting all odd sites and
then all even sites or by picking them in random order. Such procedures might reduce
correlations between the configurations before and after a sweep, but they generally also
increase computational costs due to no longer aligned memory accesses or the need to
draw a larger number of pseudo random numbers.

Since the spins are different objects depending on the dimensionality of the system,
the actual update procedure must be adapted specifically. Except for the case of d = 1,
where the compass model is reduced to a simple Ising chain [33, 34], the individual
spins have continuous degrees of freedom. Some attention must be paid to the range in
which these are altered, i.e. to the step size of the update algorithm. On the one hand,
if it is chosen too wide, only a small fraction of the proposed updates will be accepted
because often the energy will increase by a relatively large portion. If, on the other hand,
it is chosen too narrow, a high fraction of the proposed updates will be accepted, but
without substantial change of the spin configuration. Both extreme cases lead to high
autocorrelation times and therefore to small statistically effective sample sizes. Instead it
is advisable to adjust the step size in such a way that the ratio of accepted to rejected

32



3.3 Metropolis update

updates reaches an intermediary value of about 50%.

3.3.1 Metropolis in two dimensions

In the two-dimensional case the spins are represented by vectors on the unit circle that
can be parametrized by a single angle ϕi ∈ [0, 2π):

si =

(
sx

i

sy
i

)
=

(
cos ϕi

sin ϕi

)
. (3.8)

Given a spin s, a new spin s′ is proposed in one step of the Metropolis algorithm. It is
chosen randomly, equally distributed on the arc with a central angle ∆ϕ around s. See
Fig. 3.2 for an illustration.

Given a uniformly distributed random number r from the interval [0, 1) and the old
angle ϕ, the new angle ϕ′ can be chosen according to

ϕ′ = ϕ + (r− 1/2)× ∆ϕ. (3.9)

Detailed balance is satisfied because the angle range ∆ϕ is kept constant during the
simulation.

A pseudo code rendition for one Metropolis sweep is listed in Algorithm 3.1. In
the implementation the current values of sx

i , sy
i and ϕi are stored for all sites i. While

actually only the angles or the Cartesian coordinates are necessary to fully characterize
the spin configuration, the computational cost of the trigonometric functions can be
reduced in this way. I have not optimized the implementation very intensively, as for the
two-dimensional model high-precision results are already available [9, 10] and because
the cluster update discussed in Sec. 3.4.2 provides great improvements.
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Figure 3.2: Illustration of the two-dimensional single spin Metropolis update

Algorithm 3.1 Metropolis sweep for the 2D compass model

1: for site i = 1 to N do
2: r1 ← random number from [0, 1)
3: ϕ′ ← ϕi + (r1 − 1/2) · ∆ϕ
4: sx ′ ← cos ϕ′

5: sy ′ ← sin ϕ′

6: ∆E← J[(sx ′ − sx
i )(s

x
i+x̂ + sx

i−x̂) + (sy ′ − sy
i )(s

y
i+ŷ + sy

i−ŷ)]
7: if ∆E ≤ 0 then
8: accept update
9: else

10: r2 ← random number from [0, 1)
11: if r2 ≤ e−β∆E then
12: accept update
13: else
14: reject update
15: end if
16: end if
17: if update accepted then
18: (sx

i , sy
i )← (sx ′, sy ′)

19: ϕi ← ϕ′

20: end if
21: end for
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3.3 Metropolis update

3.3.2 Metropolis in three dimensions

In the three-dimensional case the spins are represented by vectors on the unit sphere
that can be parametrized by two angles ϕi ∈ [0, 2π) and θi ∈ [0, π]:

si = s(θi, ϕi) =




sx
i

sy
i

sz
i


 =




cos ϕi sin θi

sin ϕi sin θi

cos θi


 . (3.10)

Some attention must be paid to correctly select points randomly from a uniform distri-
bution over the spherical surface. The requirements for the probability density of a point
s̃ chosen on the surface are

p(s̃)dΩ = pdΩ (3.11)

with p = const and

∫∫
dΩp = 1, (3.12)

which implies p = 1/(4π). From the Jacobian of the spherical coordinates (δθ, δϕ)

defined according to Eq. (3.10) one finds for the solid angle element:

dΩ = d(δϕ) sin(δθ)d(δθ) = d(δϕ)d(cos δθ) = d(δϕ)dc (3.13)

with δϕ ∈ [0, 2π) and c ≡ cos δθ ∈ [−1, 1]. If c and δϕ are random numbers from a
uniform distribution, the corresponding point

s̃(c, δϕ) =




cos δϕ
√

1− c2

sin δϕ
√

1− c2

c


 (3.14)

is a random variable with uniform distribution over the spherical surface.
By restricting c to an interval [cmin, 1], a uniform distribution of vectors pointing onto

the spherical cap with opening angle ∆θ = arccos(cmin) is obtained. The construction of
such a vector s̃ from two angles δθ and δϕ on a spherical cap centered around the z-axis
is illustrated in Fig. 3.3.

In one step of the Metropolis algorithm a new spin vector s′ is proposed from a
spherical cap around the original spin

s = s(θ, ϕ) = (sx, sy, sz)ᵀ . (3.15)
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(a) Front view (b) Top view

Figure 3.3: Choice of a spin from a spherical cap around the z-axis for the three-dimensional Metropolis
single spin update

For an illustration see Fig. 3.4. Since the surface area described by this cap is always held
constant, detailed balance is not broken. To find s′, s̃ is rotated into a coordinate system
whose z-axis coincides with s:

s′ = R−1 · s̃, (3.16)

where R is a rotational matrix that satisfies R · s = ẑ. One such matrix is given by
R = Rn̂(θ), which realizes a right-handed rotation around the normal vector

n̂ =
s × ẑ
|s × ẑ| =

1√
(sx)2 + (sy)2




sy

−sx

0


 (3.17)

by the angle θ = arccos(sz). Using the most natural basis, the application of R = Rn̂(θ)

on a vector x results in

Rn̂(θ) · x = n̂(n̂ · x) + cos θ[(n̂× x)× n̂] + sin θ[n̂× x]. (3.18)

The inverse of R is given by R−1 = Rn̂(−θ). Hence one finds

s′ = Rn̂(−θ) · s̃ = n̂(n̂ · s̃) + cos(θ)[(n̂× s̃)× n̂]− sin(θ)[n̂× s̃]. (3.19)
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3.3 Metropolis update

Figure 3.4: Illustration of the three-dimensional single spin Metropolis update. Shown is one octant of
the unit sphere, the original spin s, a spherical cap with opening angle ∆θ from which the new spin is
chosen and one possibility for a resulting spin s′.

By inserting cos θ = sz, sin θ =
√

1− (sz)2, as well as

n̂× s̃ =
1√

(sx)2 + (sy)2




−sx · c
−sy · c

[sx · cos(δϕ) + sy · sin(δϕ)]
√

1− (sz)2


 , (3.20)

(n̂× s̃)× n̂ =

√
1− c2sx · cos(δϕ) + sy · sin(δϕ)

(sx)2 + (sy)2




sx

sy

0


+




0
0
c


 and (3.21)

n̂(n̂ · s̃) =
√

1− c2

(sx)2 + (sy)2 (s
y cos(δϕ)− sx sin(δϕ)




sy

−sx

0


 (3.22)
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into Eq. (3.19), a final expression for the updated spin s′ = (sx ′, sy ′, sz ′)ᵀ is retrieved:

s′ =




√
1− c2

(sx)2 + (sy)2

(
[(sx)2sz + (sy)2] cos δϕ + (sz − 1)sxsy sin δϕ

)
+ sxc

√
1− c2

(sx)2 + (sy)2

(
[sz − 1]sxsy cos δϕ + [(sx)2 + (sy)2sz] sin δϕ

)
+ syc

−
√

1− c2 (sx cos δϕ + sy sin δϕ) + szc




(3.23)

In Algorithm 3.2 the procedure for one Metropolis sweep of the three-dimensional
compass model is given in pseudo code.

Since the procedure is rather elaborate, it is a good idea to verify that it produces
correct results. The same update algorithm can also be applied to the classical Heisenberg
model, which is also a lattice model with spins taken as vectors on the unit sphere S2. In
the simple case of a one dimensional chain of spins with free boundary conditions it can
be solved analytically. See appendix A for a quantitative comparison of Monte Carlo
results with the exact solution.

Eq. (3.23) has a singularity if the initial spin is aligned with the z-axis, s = ±ẑ. But
due to the way pseudo-random numbers are chosen, this situation never occurs in the
simulations unless one initializes the system with such a pathological configuration.

Algorithm 3.2 Metropolis sweep for the 3D compass model

1: for site i = 0 to N do
2: r1 ← random number from [0, 1)
3: r2 ← random number from [0, 1)
4: c← cmin + r1 · (1− cmin)
5: δϕ← 2π · r2
6: Calculate (sx ′, sy ′, sz ′) from (sx

i , sy
i , sz

i ) and (c, δϕ) according to Eq. (3.23)
7: ∆E← J[(sx ′ − sx

i )(s
x
i+x̂ + sx

i−x̂) + (sy ′ − sy
i )(s

y
i+ŷ + sy

i−ŷ) + (sz ′ − sz
i )(s

z
i+ẑ + sz

i−ẑ)]
8: if ∆E ≤ 0 then
9: accept update

10: else
11: r3 ← random number from [0, 1)
12: if r3 ≤ e−β∆E then
13: accept update
14: else
15: reject update
16: end if
17: end if
18: if update accepted then
19: (sx

i , sy
i , sz

i )← (sx ′, sy ′, sz ′)
20: end if
21: end for
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3.3.3 Adjustment of step sizes

Both implementations of the Metropolis algorithm that have been discussed above
feature an adjustable parameter α = ∆ϕ or α = −cmin that can be tuned to achieve a
desired ratio of accepted spin updates. A higher value of α leads to lower acceptance
ratios.

In some Monte Carlo studies analogous parameters which set a maximum step size
were modified dynamically in the course of the simulations. Of course, such an approach
breaks detailed balance and the stochastic process underlying the Monte Carlo simulation
is no longer Markovian. Indeed Miller et al. have shown in Ref. [35] that a dynamic
adjustment of the maximum step size in conjunction with the Metropolis algorithm can
lead to systematic errors. While Swendsen has argued in a recent publication [36] that
by waiting sufficiently long between adjustments the bias introduced by this procedure
can be made negligible compared to the statistical error, I have refrained from using
such a scheme.

Instead I have restricted such an adjustment to the first half of the thermalization
phase to find the value of α which is optimal for the simulation temperature. Every 100

sweeps the parameter α is adjusted iteratively in such a way that the acceptance ratio
measured over the last 100 sweeps converges towards some target ratio t. The simple
scheme is outlined in Algorithm 3.3. Empirically the method works very well to realize
an acceptance ratio of ≈ 50% for the ranges of temperatures used with the compass
model in this work.

Algorithm 3.3 Adjustment of the maximum step size for a target Metropolis acceptance
ratio t

1: (αmin, αmax)←
{
(0, 2π), 2D
(−1, 1), 3D

2: α← αmin
3: for the first half of thermalization do
4: Perform 100 Metropolis using the parameter α and measure the acceptance ratio r
5: if r < t and α > αmin then
6: αmax ← α
7: α← α− (α− αmin)/2
8: else if r > t and α < αmax then
9: αmin ← α

10: α← α + (αmax − α)/2
11: end if
12: end for
13: for the remaining half of thermalization do
14: Update the system using the final parameter α in the Metropolis routine
15: end for
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Figure 3.5: Comparison of target acceptance ratios 0.1, 0.5, 0.8 in canonical simulations with purely local
updates of the three-dimensional compass model with screw-periodic boundary conditions at L = 8.

Efficiency

I have compared preset target acceptance ratios of 0.1, 0.5 and 0.8 for the three-
dimensional compass model. The method of determining the maximum opening angle
∆θ for the updated spins during thermalization works well for the higher values, see
Figs. 3.5(a) and 3.5(b). The acceptance ratio of 0.1 could not be sustained at the high
temperatures (low β), where spins were already chosen from the whole sphere. The
deviations at medium temperatures can probably be explained by a faulty handling of
the zero crossing of cos(∆θ) in the iterative procedure. For this qualitative comparison
this does not play a role, however, and neither in any of the production simulation runs.
A target acceptance ratio of 0.5 is a reasonable choice as it leads to lower autocorrelation
times than the wider or narrower settings as one can see in Figs. 3.5(c) and 3.5(d). Further
improvements are made using the non-local update described in the next section.
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3.4 Cluster update

3.4.1 Cluster algorithms for spin models

Cluster update algorithms have originally been devised as a remedy for the problem
of critical slowing down at second-order phase transitions, which is caused by the
magnitude of spatial correlations at the transition point, see Sec. 2.5.1. In spin models
this leads to large connected droplets of spins with equal orientation. Instead of trying
to flip individual spins with a local update algorithm, the knowledge of these structures
is exploited in non-local cluster updates. Their central idea is to flip entire clusters of
equally oriented spins at the same time.

The first successful algorithm of this class was the multiple-cluster update by Swendsen
and Wang [37] for discrete spin q-state Potts models defined by the Hamiltonian

HPotts = J ∑
〈i,j〉

δσi ,σj (3.24)

with σi = 1, . . . , q and where the sum goes over nearest neighbor pairs of lattice sites.
In one step of the Swendsen-Wang algorithm the whole lattice is first decomposed into
stochastic clusters, then a random new common spin state is assigned to each cluster.

The second important cluster algorithm is the single-cluster update by Wolff [38],
which has been formulated from the beginning for spin models with O(n)-symmetry
defined by the Hamiltonian

HO(n) = J ∑
〈i,j〉

si · sj, (3.25)

where the spins si are n-dimensional vectors on the hyper-sphere Sn−1. For n = 1 it
corresponds to the Ising-model, for n = 2 to the xy-model and for n = 3 to the classical
Heisenberg-model.

In one step of the Wolff-cluster update a random lattice site is picked as a seed from
which a stochastic cluster is constructed. Then all spins in the cluster are reflected about
a common randomly chosen plane.

Cluster updates always need to be tailored specifically to the model under examination.

3.4.2 A Wolff-like single linear cluster update

In Ref. [10] Wenzel, Janke and Läuchli have proposed a one-dimensional adaption of the
Wolff-cluster update from to the two-dimensional classical compass model. It exploits
the special coupling of lattice and spin symmetries in the compass model, which leads to
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3 Methods applied to the compass model

the formation of one-dimensional spin chains in the ordered phase. The generalization
of this algorithm to arbitrary dimensions d is straightforward.

The Hamiltonian of a model of spins with nearest neighbor interactions on a periodic
hyper-cubic lattice can be written in the form

H = ∑
〈i,j〉
Hij(si, sj), (3.26)

where Hij is the bond energy of a pair of nearest neighbor spins. For an O(n)-model it
is Hij = Jsi · sj and for the d-dimensional compass model it is Hij = J ∑d

k=1(s
k
i sk

j )δj,i+k̂.
Wolff defines a spin flip operation by the reflection of a spin si along the hyperplane

orthogonal to a vector r ∈ Sn−1:

R(r)si = si − 2(si · r)r, (3.27)

which is idempotent:

R(r)2si = R(r)R(r)si = R(r)si − 2(R(r)si · r)r
= si − 2(si · r)r− 2(si · r)r + 4(si · r)r = si. (3.28)

Clusters will be constructed from the spins on pairs of neighboring sites 〈i, j〉, also called
bonds, and flipped using R(r). Detailed balance is achieved in the Wolff algorithm if the
energies of included bonds are invariant under the reflection R(r):

Hij(R(r)si, R(r)sj) = Hij(si, sj) (3.29)

and if one has

Hij(R(r)si, sj) = Hij(si, R(r)sj). (3.30)

A proof will be given further below. In an O(n)-model, these conditions are of course
satisfied for any choice of bonds 〈i, j〉 and vectors r, as one can verify immediately:

R(r)si · R(r)sj = [si − 2(si · r)r] · [sj − 2(sj · r)r]
= si · sj − 4(si · r)(sj · r) + 4(si · r)(sj · r) = si · sj, (3.31)

and

(R(r)si) · sj = si · sj − 2(si · r)(sj · r) = si · R(r)sj. (3.32)
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3.4 Cluster update

Clearly, the compass model bond energy is not generally conserved under this reflection.
However, the reflection operations R(k̂), k = 1, . . . , d, with respect to the lattice planes
orthogonal to k̂ each leave Hij invariant for a subset of bonds 〈i, j〉 =

〈
i, i + k̂

〉
(see the

earlier discussion in Sec. 1.3.1). In three dimensions these are the reflections with

R(x̂)(sx
i , sy

i , sz
i ) = (−sx

i , sy
i , sz

i ), (3.33)

R(ŷ)(sx
i , sy

i , sz
i ) = (sx

i ,−sy
i , sz

i ), (3.34)

R(ẑ)(sx
i , sy

i , sz
i ) = (sx

i , sy
i ,−sz

i ), (3.35)

which are symmetries on one-dimensional subsets of the lattice:

Hi,i+x̂(R(x̂)si, R(x̂)si+x̂) = Hi,i+x̂(si, si+x̂), (3.36)

Hi,i+ŷ(R(ŷ)si, R(ŷ)si+ŷ) = Hi,i+ŷ(si, si+ŷ), (3.37)

Hi,i+ẑ(R(ẑ)si, R(ẑ)si+ẑ) = Hi,i+ẑ(si, si+ẑ). (3.38)

Moreover the R(k̂) also satisfy Eq. (3.30):

Hi,i+k̂(si, R(k̂)si+k̂) = −Jsk
i sk

i+k̂ = Hi,i+k̂(si, R(k̂)si+k̂). (3.39)

Therefore the Wolff algorithm can be used with the compass model if it is restricted to
strictly linear clusters constructed along the lattice axes.

One update step of the algorithm consists of the following sequence:

1. Choose a random reflection plane defined by a normal r taken from the set of
vectors suitable for the model.

Choose a random lattice site i as the seed of a cluster C.

2. Flip the spin at site i: si → R(r)si, and mark the site as visited.

3. Visit all neighboring unmarked sites j of i for which Hij is invariant under the
reflection R(r).

Then with probability

Pij(si, sj) = 1− emin{0,−β[Hij(si ,sj)−Hij(si ,R(r)sj)]} (3.40)

add site j to C: Flip sj → R(r)sj, and mark the site as visited. In Eq. (3.40) si

already has the flipped orientation.

4. Iterate step 3 with i taking the place of every newly adjoined site until no further
sites are added to the cluster C.
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3 Methods applied to the compass model

For an O(n)-model as defined in Eq. (3.25) Pij(si, sj) in step 3 can be evaluated to

PO(n)
ij (si, sj) = 1− emin{0,−βsi [1−R(r)]sj} = 1− emin{0,−2βJ(r·si)(r·sj)}. (3.41)

In this way the cluster is constructed only from spins that are mostly aligned: Only those
spins for which the dot products with r have the same sign before the flip are considered
for addition. Moreover, spins that are nearly aligned are added with higher probability
than others.

For the compass model the addition probabilities Pij for bonds
〈

i, i + k̂
〉

are given by

Pi,i+k̂(si, si+k̂) = 1− emin
{

0,−2βJsk
i sk

i+k̂

}
. (3.42)

As an example consider the three-dimensional case. With the Wolff algorithm it is
possible to flip one-dimensional clusters parallel to the x-, y- or z-axis of the lattice,
where the cluster-growth probabilities are given by

Pi,i+x̂(si, si+x̂) = 1− emin{0,−2βJsx
i sx

i+x̂}, (3.43)

Pi,i+ŷ(si, si+ŷ) = 1− emin
{

0,−2βJsy
i sy

i+ŷ

}
, (3.44)

Pi,i+ẑ(si, si+ẑ) = 1− emin{0,−2βJsz
i sz

i+ẑ}. (3.45)

An implementation of the single cluster update for the compass model can be done
according to Algorithm 3.4 on p. 45, which allows for periodic boundary conditions. The
implementation is simpler than for higher-dimensional clusters in other models because
no stack of visited sites needs to be handled.

See Fig. 3.6 on p. 46 for an illustration of the single linear cluster update with the
two-dimensional compass model. Since screw-periodic boundary conditions are applied,
this cluster is longer than the linear lattice size.

Detailed balance

To see that the single cluster algorithm satisfies detailed balance according to Eq. (2.35)
in Sec. 2.4.1, consider the ratio of transition probabilities between two spin configurations
{ si } and { s′i } that differ by a reflection operation R(r) applied to a cluster C of size
|C|. Also let ∂C denote the surface of C, which consists of all pairs of neighboring lattice
sites 〈i, j〉 with i ∈ C and j /∈ C. The transition probabilities can be expressed as products
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3.4 Cluster update

Algorithm 3.4 Single cluster update for the d-dimensional compass model

1: k̂← random direction from { ê1, . . . , êd }
2: seed site: i0 ← random site from { 1, . . . , N }
3: boundary site: if ← i0
4: i← i0
5: repeat
6: flip: sk

i ← −sk
i

7: next site j← i + k̂
8: r ← random number from [0, 1)
9: if r < 1− e−2Jβsk

i sk
j then

10: i← j
11: if ← i
12: end if
13: until i 6= j {no site added in this iteration} or j = i0 {percolating cluster}
14: if j 6= i0 then
15: i← i0
16: repeat
17: next site j← i− k̂
18: if j 6= if then
19: r ← random number from [0, 1)
20: if r < 1− e−2Jβsk

i sk
j then

21: i← j
22: flip: sk

i ← −sk
i

23: end if
24: end if
25: until i 6= j {no site added in this iteration} or j = if {percolating cluster}
26: end if

of the probabilities of choices that lead to the construction of C in both directions:

W
(
{ si }

R(r)−−→
on C

{
s′i
})

= P(r)

︸︷︷︸
flip

direction

· |C|
N
︸︷︷︸
cluster
seed

·∏
〈i,j〉∈C

Pij(R(r)si, sj)

︸ ︷︷ ︸
addition of
inner sites

·∏
〈i,j〉∈∂C

(1− Pij(R(r)si, sj))

︸ ︷︷ ︸
sites outside the cluster,

not added

(3.46)

and similarly

W
({

s′i
} R(r)−−→

on C
{ si }

)
= P(r) · |C|

N
·∏
〈i,j〉∈C

Pij(R(r)s′i, s′j) ·∏
〈i,j〉∈∂C

(1− Pij(R(r)s′i, sj)).

(3.47)
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(a) Before update (b) After update

Figure 3.6: Snapshots from a Monte Carlo simulation of the two-dimensional compass model with L = 12
and screw-periodic boundary conditions at β = 6 right before and after the update of a single cluster in
x-direction of size 40. Sites included in the cluster are marked with gray boxes. Color is used to ease the
discrimination of spin orientations.

The probability P(r) of choosing the normal r of the plane of reflection is given as
discrete here, which is valid for the compass model. For models like an O(n)-model
with n ≥ 2 it would have to be formulated in terms of a probability density, but the
important point is that the probabilities are equal in both directions. The probabilities of
adding new sites to the cluster Pij in Eq. (3.47) satisfy

Pij(R(r)s′i, s′j) = Pij(si, R(r)sj)
!
= Pij(R(r)si, sj). (3.48)

The last equality holds because by the definition in Eq. (3.40) one has for the site addition
probabilities

Pij(si, R(r)sj) = 1− emin{0,−β[Hij(si ,R(r)sj)−Hij(si ,sj)]}
!
= 1− emin{0,−β[Hij(R(r)si ,sj)−Hij(R(r)si ,R(r)sj)]}

= Pij(R(r)si, sj), (3.49)

where the symmetries (3.29) and (3.30) have been used. Hence the transition probabilities
in Eqs. (3.46) and (3.47) only differ by the factors related to the cluster surface and their
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ratio is:

W ({ si } → { s′i })
W(
{

s′i
}
→ { si })

=
∏〈i,j〉∈∂C(1− Pij(R(r)si, sj))

∏〈i,j〉∈∂C(1− Pij(si, sj))
(3.50)

All Pij appearing here are smaller than one. Else 〈i, j〉 would be part of C. Thus:

W ({ si } → { s′i })
W(
{

s′i
}
→ { si })

= ∏
〈i,j〉∈∂C

1− e−β[Hij(R(r)si, sj)−Hij(si, sj)]

1− e−β[Hij(si, sj)−Hij(si, R(r)sj)︸ ︷︷ ︸
=Hij(R(r)si ,sj)

]
(3.51)

Each factor is of the form 1−α
1−1/α = −α with α = e−β[... ], which allows to rewrite the

product in the following way:

W ({ si } → { s′i })
W(
{

s′i
}
→ { si })

= ∏
〈i,j〉∈∂C

(−1) · e−β[Hij(R(r)si ,sj)−Hij(si ,sj)] (3.52)

The factors of −1 vanish because on the periodic, hyper-cubic lattices considered here
the number of surface bonds of a cluster is always even. With the help of an added
zero it becomes clear that the expression is completely independent of the choice of the
cluster C:

W ({ si } → { s′i })
W(
{

s′i
}
→ { si })

= exp
[
− β ∑

〈i,j〉∈∂C
[Hij(R(r)si, sj)−Hij(si, sj)]

− β ∑
〈i,j〉∈C

[Hij(R(r)si, R(r)sj)−Hij(si, sj)︸ ︷︷ ︸
=0

]
]

= exp
[
− β ∑

〈i,j〉
[Hij(s′i, s′j)−Hij(si, sj)]

]
(3.53)

So the transition probabilities satisfy detailed balance:

W ({ si } → { s′i })
W(
{

s′i
}
→ { si })

= e−β∆E
(
{ si } →

{
s′i
})

. (3.54)

Ergodicity

For O(n)-models the single cluster update is ergodic: There is always a reflection R(r)
connecting any two spin orientations. And since clusters of size 1 are constructed with
positive probability, there is always the possibility to reach any configuration of spins
from any given configuration in a series of updates.

However, due to the restricted choice of possible reflection vectors r in the compass
model, the Wolff update on its own is not ergodic here. The solution proposed by
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Wenzel et al. [10] is to mix cluster updates with local Metropolis updates. For the two-
dimensional compass model they have combined on average L linear cluster updates
in both x- and y-direction with N = L2 single spin updates. For most of the studies of
the three-dimensional compass model in this work, one update step has consisted of 3L
cluster updates in randomly chosen directions followed by N = L3 local updates.

Choosing a higher number of cluster updates per step like 3L2 does not provide
benefits. Due to the limited set of possible cluster flips after a certain threshold too many
cluster flips in a row will recreate very similar configurations again and again.

Such a combination of local with non-local updates into a cluster hybrid algorithm
has already been discussed earlier for discrete spin systems. Plascak et al. have found
the combination of single-spin Metropolis and Wolff-cluster updates to both increase the
efficiency and to reduce numerical errors caused by correlated pseudo-random numbers
with respect to the uncombined algorithms [39]. The Wolff algorithm has been found
particularly sensitive to the quality of the random number generator in use [40].

3.5 Parallel tempering

The previously described algorithms always treat the simulated system in an canonical
ensemble, where it is kept in thermal equilibrium with a heat bath and hence at constant
temperature. Further improvements can be made by relaxing this restriction and consid-
ering different ensembles. The methods presented in the following have been invented
in this spirit.

3.5.1 Tempering methods

The idea of tempering methods is to treat the temperature at which a simulation is carried
out as a dynamic variable. In this way short correlation times at high temperatures
can be exploited to overcome free energy barriers to visit regions of phase space at
lower temperatures that would otherwise only be reached with a significant amount of
additional simulation time.

Simulated tempering

With simulated tempering [41, 42] the inverse temperature β takes on different values
from a set { βk }K

k=1 and instead of the canonical ensemble at a single temperature an
“expanded ensemble” with a joint partition function

ZST =
K

∑
k=1

eαkZ(βk) =
K

∑
k=1

eαk

∫
dx e−βkH(x) (3.55)
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is sampled. Temperatures are exchanged during the simulation of a single system
according to the Metropolis criterion, where the transition probabilities assume the form

W(x, βk → βl) = min
{

1, e−(βl−βk)H(x) + αl − αk

}
. (3.56)

The system configuration x is altered separately with regular update algorithms. A
major disadvantage of simulated tempering is that the parameters αk are not known in
advance and can only be adjusted in an iterative fashion.

Parallel tempering

The method of parallel tempering, which is also known under the name of replica
exchange Monte Carlo, has been proposed independently by multiple authors: Swendsen
and Wang [43], Geyer [44] and Hukushima and Nemoto [45].

In contrast to simulated tempering, an “extended ensemble” characterized by a product
of partition functions

ZPT =
K

∏
k=1
Z(βk) =

K

∏
k=1

∫

{ x }k

dx e−βkH(x) (3.57)

is sampled. Here, K different replicas of the system are simulated simultaneously. Taken
on its own, each replica is kept in a canonical ensemble associated with a distinct
inverse temperature βk. A state of the extended ensemble is given by the set { xk, βk }K

k=1

and in equilibrium its probability distribution is given by the product of the canonical
distributions of the individual replicas:

Peq({ xk, βk }K
k=1) =

K

∏
k=1
Peq(xk, βk) =

1
ZPT

K

∏
k=1

e−βkH(xk) (3.58)

In a parallel tempering simulation a Markov process in the extended ensemble is realized
by exchanging system configurations among the replicas. In one step, configurations
are swapped between two replicas k and l with a transition probability W(xk, βk|xl , βl).
According to Sec. 2.4 a valid choice of transition probabilities is given if they satisfy
detailed balance:

Peq({ . . . ; xk, βk; . . . ; xl , βl ; . . . })W(xk, βk|xl , βl)

= Peq({ . . . ; xl , βk; . . . ; xk, βl ; . . . })W(xl , βk|xk, βl) (3.59)
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By Eq. (3.58) this fixes their ratio:

W(xk, βk|xl , βl)

W(xl , βk|xk, βl)
=

e−βkH(xl)e−βlH(xk)

e−βkH(xk)e−βlH(xl)
= e[βl−βk ][H(xl)−H(xk)]. (3.60)

Usually the transition probabilities are realized by an adaption of the Metropolis algo-
rithm from Sec. 2.4.2 to the extended ensemble. Writing ∆ = ∆β∆E = [βl − βk][H(xl)−
H(xk)], this leads to

W(xk, βk|xl , βl) = min
{

1, e∆
}
=





e∆, if ∆ ≤ 0,

1, if ∆ > 0.
(3.61)

In contrast to simulated tempering there are no additional weighting factors that would
have to be determined.

The inverse temperatures of replica exchange partners should be chosen relatively
close to each other so that the canonical energy distributions at both temperatures
overlap. Else the magnitude of ∆E would be large, but enter with the sign opposing ∆β.
Hence acceptance probabilities would be small and there would be little to no efficiency
gain. For this reason typically only exchanges between pairs of nearest-neighbor inverse
temperature points βk are proposed.

The parallel tempering routine can be combined with any canonical algorithm used to
update the replicas. After a certain number of canonical updates replica exchanges are
proposed and accepted with a probability according to Eq. (3.61).

In this way, an estimate for the expectation value of some observable O at one of the
inverse temperatures βk used in the simulation can be determined as the usual sample
mean:

Ô(βk) =
1
M

M

∑
t=1
O(xk(t)) (3.62)

See Algorithm 3.5 for a pseudo-code rendition of the parallel tempering procedure. The
actual implementation differs from that outline in so far as not the system conformations
xk are exchanged between the replicas, but the inverse temperatures βk. This is fully
equivalent, but reduces the computational overhead at the price of slightly obstructed
notation due to additional “bookkeeping” of replica and temperature indexes. With
this scheme, one needs to keep track of the temperature time series { βl(t) }M

t=1 of each
replica l, l = 1, . . . , K, to estimate expectation values:

Ô(βk) =
1
M

M

∑
t=1

K

∑
l=1
O(xl(t))δβl(t),βk

. (3.63)
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Algorithm 3.5 Parallel tempering update step

1: for k = 1 to K do
2: for a certain number of Monte Carlo sweeps do
3: update replica k canonically at βk
4: end for
5: end for
6: for k = 1 to K− 1 do
7: ∆← [βk − βk+1][H(xk)−H(xk+1)]
8: if ∆ ≥ 0 then
9: accept exchange

10: else
11: r ← random number from [0, 1)
12: if r ≤ e∆ then
13: accept exchange
14: end if
15: end if
16: if exchange accepted then
17: swap configurations xk and xk+1
18: end if
19: end for

In Fig. 3.7 example replica-trajectories in temperature space are given as an illustration
along with the measured energy distributions at the different simulation temperatures.
The energy histograms at neighboring temperatures show significant overlap.

Of course the simulation of multiple replicas costs CPU time. However, for many
systems the improvement of statistics due to reduced correlations outweighs these
considerations. Even if that is not fully the case, one is often interested in results over
a range of temperatures, which are given directly with parallel tempering. Moreover,
the algorithm can be parallelized quite easily with little need for communication, so if
sufficient resources are available, the impact on real “wall clock” time is limited.

3.5.2 Selection of temperature intervals

It has already been mentioned above that the energy distributions at the inverse temper-
atures { βk } that are taken as replica exchange partners need to have sufficient overlap
because else exchanges would only be accepted very rarely. An order of magnitude
estimate of the logarithm of the probability e∆ to exchange βk and βk+1 = βk + δβ is [45]:

∆ = δβ · [H(xk+1)−H(xk)]

∼ (δβ)2 · 〈E〉(βk + δβ)− 〈E〉(βk)

δβ
∼ (δβ)2 · dE(βk)

dβ
= − (δβ)2

kBβ2
k
· C(βk). (3.64)
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Figure 3.7: Example β-trajectories and energy histograms from a short parallel tempering simulation of the
two-dimensional compass model with screw-periodic boundary conditions at L = 36 with 8 replicas.
Temperature swaps were proposed every 5 sweeps. The energy histograms overlap, which is necessary
for the exchanges to be accepted with non-negligible probabilities.

Eq. (3.64) gives raise to two considerations:

1. The energy E and the heat capacity C are extensive quantities that scale with the
system size N. To maintain acceptance probabilities on a constant level the spacing
of the inverse temperatures δβ should be chosen on the order of 1/

√
N.

2. The heat capacity C diverges at a phase transition. This leads to low acceptance
probabilities if the effect is not compensated by a closer spacing δβ in the vicinity
of the pseudo-transition temperature of the finite system. A more rigorous relation
between heat capacity and acceptance probabilities has been given by Predescu et
al. [46].

The second effect has been very noticeable in simulations of the three-dimensional
compass model, see Fig. 3.8 for an example.

3.5.2.1 Constant acceptance probabilities

To compensate for the effect of the heat capacity many schemes have been proposed
in the literature that aim for constant exchange acceptance probabilities. Of note is the
work by Predescu et al. [46, 47], Kofke and Kone [48–50] and Rathore et al. [51].

By having these local transition probabilities in temperature space uniform, one hopes
to achieve a random walk of the replicas over the whole temperature range instead of
them being restricted to disjoint segments.
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Figure 3.8: Measured exchange acceptance ratios of neighboring temperature pairs in a parallel tempering
simulation of the three-dimensional compass model with screw-periodic boundary conditions at L = 28.
The model was simulated at 64 inverse temperatures between β1 = 8 and β64 = 12.5 chosen with
constant separation δβ. The minimum of the acceptance ratio is at β39 = 10.29, close to the transition
point.

Following Ref. [48], the previously alluded relation between energy distribution
overlap and exchange acceptance probability can be quantified: Let the expectation
value of that probability between two inverse temperatures βk and βl be denoted by
〈Wkl〉 ≡ 〈W(xk, βk|xl , βl)〉xk ,xl and write Pk(E) = Peq(E, βk). Without loss of generality
assume βk > βl . Then

〈Wkl〉 =
∞∫

−∞

dEkPk(Ek)

∞∫

−∞

dEl Pl(El)min
{

1, e[βk−βl ][Ek−El ]
}

=

∞∫

−∞

dEk

Ek∫

−∞

dEl Pk(Ek)Pl(El)e[βk−βl ][Ek−El ] +

∞∫

−∞

dEk

∞∫

Ek

dEl Pk(Ek)Pl(El)

and with the insertion of Peq(E, β) = Ω(E)e−βE/Z(β), where Ω(E) is the energy density
of states, into the first term and the application of Fubini’s theorem on the second term
one obtains

〈Wkl〉 =
∞∫

−∞

dEk
Ω(Ek)e−βl Ek

Z(βl)

Ek∫

−∞

dEl
Ω(El)e−βkEl

Z(βk)
+

∞∫

−∞

dEk

Ek∫

−∞

dEl Pk(Ek)Pl(El)

= 2
∞∫

−∞

dEkPk(Ek)

Ek∫

−∞

dEl Pl(El). (3.65)

The double integral in Eq. (3.65) is a measure for the overlap of the two distributions. Its
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3 Methods applied to the compass model

value ranges from 0 if they are completely disjoint to 1 if they are identical.
Consequently, in order to have constant exchange acceptance probabilities it suffices to

find a range of inverse temperatures { βk } that leads to canonical energy distributions
Peq(E, βk) with constant overlap between neighbors. I have applied an empirical scheme
to find such a set { βk }:

1. A short preliminary parallel tempering simulation is run with an ad hoc distri-
bution of temperatures

{
β0

k

}
spanning the range of interest. This yields rough

estimates of Peq(E, β0
k) in the form of energy histograms.

2. These histograms are subjected to the multiple histogram analysis method outlined
in Sec. 3.6 to approximately estimate the discretized energy density of states Ω(E).

3. From that estimate the energy distribution at arbitrary inverse temperatures con-
tained in the original range can be reweighted directly:

P̂eq(E, β) =
Ω̂(E)e−βE

Ẑ(β)
, (3.66)

where Ẑ(β) is determined as a normalization constant.

4. Iteratively the βk are adjusted until the histogram overlap between neighboring
temperature points is approximately constant over the whole range. Here the
overlap is quantized as the common area under the distribution functions. The
method used for this iteration is sketched in Algorithm 3.6.

This method works very well to ensure approximately constant exchange probabilities
although already the preliminary simulations can be quite time consuming. Nevertheless,
in simulations of the three-dimensional compass model on relatively large lattices, the
goal of achieving an unbiased random walk in temperature space could not be achieved
in this way. See Fig. 3.9 on p. 56 for an example trajectory in temperature space of one
replica of the N = 323 compass model. There is a clear separation into two regions
below and above the transition point with few crossings in between. Evidently the
influence of the phase transition has not been eliminated by compensating for the effect
of a diverging heat capacity on the exchange probabilities.

3.5.2.2 Optimized flow

In a different approach for the selection of temperatures in parallel tempering one sets
out to minimize the total mean first passage time or average round-trip time τrt, which
is the number of proposed exchange updates a replica needs to travel from the lowest
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3.5 Parallel tempering

Algorithm 3.6 Reweight to approximately constant energy overlap

Require: original inverse temperatures
{

β0
k

}K
k=1, ordered β0

k < β0
k+1

Ensure: new inverse temperatures { βk }K
k=1 with β1 = β0

1, βK = β0
K, βk < βk+1 and

overlap(P̂eq(E, βk), P̂eq(E, βk+1)) approximately constant

1: t← average next neighbor overlap of
{
P̂eq(E, β0

k)
}

2: β1 ← β0
1, βK ← β0

K
3: repeat
4: {Find inverse temperatures closing in from above and below:}
5: l ← 1, h← K
6: while l < h do
7: βl+1 ← try to find between βl and βh such that overlap(P̂eq(E, βl), P̂eq(E, βh))

is t within 5% by continuously bisecting the β-interval and reweighting trial
histograms; if impossible take the last value from the bisection

8: βh−1 ← try to find in the same way between βl and βh such that
overlap(P̂eq(E, βh−1), P̂eq(E, βh)) ≈ t

9: l ← l + 1, h← h− 1
10: end while
11: {Handle central temperature interval:}
12: βl+1 ← try to find in the same way between βl and βl+2 such that

overlap(P̂eq(E, βl), P̂eq(E, βl+1)) ≈ t
13: {Adjust t if some overlap is much smaller:}
14: for k← 1 to K− 1 do
15: o ← overlap(P̂eq(E, βk), P̂eq(E, βk+1))
16: if o−t

t < −5% then
17: t← t + o−t

K−1
18: end if
19: end for
20: until no adjustment of t was necessary

inverse temperature β1 to the highest βK and back. Such an optimization would prevent
situations like the one in Fig. 3.9. Adapting work by Trebst et al. [52], Katzgraber et al.
have shown [53] under some assumptions on the temperature dependence of the local
diffusion coefficient that the set of inverse temperatures { βk } optimized in the sense of
minimizing τrt can be found by studying the fraction of replicas moving up in inverse
temperature space 1

fup(βk) =
nup(βk)

nup(βk) + ndown(βk)
. (3.67)

1Actually the discussion in Ref. [53] is formulated in terms of temperatures Tk, but the results are
equivalent.
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Figure 3.9: Temperature index time series of one replica from a parallel tempering simulation of the three-
dimensional compass model at L = 32 with β ranging from 9 to 12.5. Exchange acceptance probabilities
are approximately constant at 0.42± 0.03 for all pairs of temperatures, but there still is a clear bottleneck
close to the location of the phase transition. The trajectory over the whole simulation of 2.5 · 107 sweeps
is shown heavily scaled down. Still all crossings into the region of k . 20 are visible.

Here nup(βk) counts the number of times a replica has visited βk in the course of the
simulation after having last visited β1 and not βK. Accordingly ndown(βk) counts the
number of replicas currently moving down from βK when they visit βk. The boundary
conditions are of course set to fup(β1) = 1 and fup(βK) = 0. Now the optimal fraction is
found to be linear in the inverse temperature index:

f opt
up (βk) = 1− k− 1

K− 1
. (3.68)

The iteration scheme known as feedback-optimized parallel tempering has been proposed
to find temperature ranges optimized in this sense. It has been applied successfully to
the ferromagnetic and the fully frustrated Ising model [53] and polymer models [54]. A
concise formulation of the algorithm is found in the paper by Nadler and Hansmann [55].
Some improvements are given by Hamze et al. [56]. However, for convergence the
scheme requires to collect sufficient round-trip data, which can make the preliminary
determination of the temperature range very time consuming.

An effect of this procedure of optimization is that exchange acceptance probabilities
are in general no longer uniform for all temperatures. Instead, temperature points are
concentrated near bottle-necks such as phase transitions, which leads to higher exchange
rates in those regions.

A different, but similar approach of optimization has been presented by Bittner et
al. [57]. Here the range of simulation temperatures is held fixed with constant exchange
acceptance probabilities of 50%. The quantity that is adapted instead is the number
of Monte Carlo sweeps a replica spends at a temperature before the next exchange is
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3.5 Parallel tempering

attempted. By scaling this time with the autocorrelation time measured in a preliminary
canonical simulation at that temperature, optimal flow akin to the feedback-optimized
parallel tempering could be achieved in simulations of the ferromagnetic Ising model.
Otherwise, if waiting times before swaps are chosen too low, critical slowing down at
the second-order phase transition causes the replicas to be highly correlated in time:
Coming from the high-temperature phase they are not given the chance to assume an
energy that would allow them to be exchanged with a low-temperature replica before
they are already swapped back to a higher temperature.

A practical problem of this approach is that it cannot be parallelized as well as regular
parallel tempering, where normally replicas are distributed over parallel computer nodes
and updated concurrently until exchanges are coordinated from a master node. If some
replicas are given significantly more time than others before the exchange, a lot of CPU
time will be wasted on idle waiting.

3.5.2.3 Constant entropy difference

Kofke has provided the idea to relate replica exchange acceptance probabilities with the
difference of the entropy S between the exchange partners [48]. Building on this, Sabo
et al. have suggested [58] to choose the set of inverse temperatures { βk }K

k=1 with the
requirement that the difference of entropy between adjacent temperatures is constant.
The authors do not give a rigorous motivation for this choice, but it has some intuitive
appeal in the sense that each successive temperature point contributes the same amount
of additional “information”.

If volume is constant, the entropy difference between given inverse temperatures
β1 = 1/kBT1 and βK = 1/kBTK can be computed from the heat capacity CV :

∆S =

TK∫

T1

dT
CV(T)

T
= −

βK∫

β1

dβ
CV(β)

β
, (3.69)

which for most physical systems is negative as long as βK > β1. Then the intermediate
inverse temperatures can be found by sequentially solving

βk+1∫

βk

dβ
CV(β)

β
=
−∆S
K− 1

(3.70)

for βk+1. In general the heat capacity is not known beforehand. One could estimate
it for the system size of interest in a preliminary simulation run or simply use results
from a smaller system if available. In simulations of the 2D Ising model the authors
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3 Methods applied to the compass model

of Ref. [58] have obtained results with high accuracy close to that achieved with the
feed-back optimization algorithm of Ref. [53] even when an approximate model of the
heat capacity was used.

As this approach promises to improve the replica exchange process in simulations of
the compass model without requiring exhaustive preliminary iterations, I have decided
to implement it. The following scheme is used to find a set { βk } with approximately
constant entropy difference between given inverse temperatures β1 and βK:

1. Use data from an earlier parallel tempering simulation at a smaller lattice size
which included at least β1 and βK and apply the multiple histogram analysis from
Sec. 3.6. This provides the ability to estimate CV(β).

2. Estimate ∆S by Eq. (3.69) using an adaptive numerical integration routine from the
GNU scientific library [59].

3. For k = 1, . . . , K− 2 solve Eq. (3.70) numerically using an algorithm which com-
bines bisection and a Newton-Raphson solver similar to rtsafe in chapter 9.4 of
Numerical Recipes [27].

I have found it to be quick and to deliver stable results.
To estimate the quality of the generated inverse temperature range { βk }, I have

repeated the parallel tempering simulation of the three-dimensional compass model
with screw-periodic boundary conditions at L = 32, where diffusion in temperature
space was strongly inhibited with the constant acceptance ratio ensemble of temperatures.
All parameters were kept identical except for the distribution of the 64 temperature points
in the β-range from 9 to 12.5, which was now chosen for constant entropy difference.
Both simulations were run for 2.5 · 107 sweeps after 2.5 · 106 sweeps of thermalization.
Measurements were made every 50 sweeps, yielding 5 · 105 samples at each temperature.
Replica exchanges were attempted every 100 sweeps.

The exchange acceptance ratios in Fig. 3.10(a) are no longer flat, but higher in the
vicinity of the phase transition. By Fig. 3.10(b) the diffusion in temperature space
is improved, but sill far from the optimal behavior. Finally, the squared statistical
accuracy of the measurements in the vicinity of the transition temperature is improved
approximately by a factor of two as one can see in the integrated autocorrelation times
shown in Figs. 3.10(c) and 3.10(d). They have been estimated by summing up the
autocorrelation function of the time series ordered by temperature and should not be
understood as precise measurements. Moreover it should be noted that they are given in
units of 50 Monte Carlo sweeps.
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Figure 3.10: Comparison of parallel tempering simulations with constant energy distribution overlap against
constant entropy differences between adjacent temperatures
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3 Methods applied to the compass model

3.6 Multiple histogram reweighting

The multiple histogram method was originally introduced by Ferrenberg and Swendsen
in 1989 [60] as a procedure to join together several sets of simulation data generated at
different temperatures in an optimized way. It has been made particularly popular by
Kumar et al. in 1992 in a slightly extended version under the name Weighted Histogram
Analysis Method, frequently abbreviated WHAM [61].

The multiple histogram method allows one to estimate expectation values of an arbi-
trary observable O over a wide range of inverse temperatures β. A simpler reweighting
technique that uses simulation data obtained at only a single temperature to extrapolate
at nearby temperatures had already been proven to be effective earlier by Ferrenberg
and Swendsen [62]. But thanks to the combination of data acquired independently at
various temperatures the multiple histogram method has the potential to provide results
with lower statistical uncertainties.

When parallel tempering is used in Monte Carlo simulations, generally a wide range of
temperatures is sampled. To estimate expectation values of observables in the canonical
ensemble at specific temperatures a method that discards as little of the simulation data
as possible is preferable. The multiple histogram reweighting method as described in
the following almost suggests itself for such a scheme of analysis.

3.6.1 Analysis of independent simulations

The following presentation of the multiple histogram method mostly follows the textbook
by Newman and Barkema [19] and the derivation given by Chodera et al. [63].

The fundamental idea is to combine the data from K independent simulations that
sample from the canonical ensembles at inverse temperatures β1, β2, . . . , βK to estimate
the internal energy density of states Ω(E), which is independent of temperature, for
all energies reached in the simulations. Ω(E) can then be used to estimate expectation
values of any observable at arbitrary inverse temperatures β, that do not need to match
any of the βk at which the simulations were originally carried out:

〈O〉β =

∫
dEΩ(E)e−βEO(E)∫

dEΩ(E)e−βE , (3.71)

where O(E) is the average of O over all states with internal energy E:

O(E) =
∫

dxδ(E(x)− E)O(E)∫
dxδ(E(x)− E)

. (3.72)
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3.6.1.1 Estimating the density of states from single simulations

For each k = 1, . . . , K first individual estimates Ω̂k(E) of the density of states using
only the information from a single simulation at βk are made. The Ω̂k(E) will then be
combined in an optimized way for the complete estimate Ω̂(E).

In the following the probability density function p(E|β) of the energy at inverse
temperature β will be estimated based on histograms. While this will introduce some
systematic discretization error in the case of a continuous system such as the compass
model, this approach is simple and efficient to implement. With this in mind, p(E|β)
will be considered only at I different energy levels Ei, which are chosen equally spaced
∆E apart and span the whole energy range sampled in the simulation. Writing pi(β) ≡
p(Ei|β) and Ωi ≡ Ω(Ei), one has:

pi(β) = Ωie−βEi /Z(β). (3.73)

The normalizing constant is the partition function Z(β) ≈ ∆E ∑I
i=1 Ωie−βEi . Let {Ekm}Mk

m=1

denote the time series of length Mk containing energy measurements from the k’th simu-
lation. Then define ψi(E) as the characteristic function for the energy bin of width ∆E
centered about Ei:

ψi(E) =





1, if E ∈ [Ei − ∆E/2, Ei + ∆E/2),

0, else.
(3.74)

With the shorthand ψikm ≡ ψi(Ekm) the histogram which counts samples in energy bin i
from simulation k can be expressed as Hik = ∑Mk

m=1 ψikm. Then pi(βk) can be estimated as

p̂i(βk) =
1

∆E
· Hik

Mk
, (3.75)

which can be biased by discretization, if 〈ψikm〉 = ∆E · pi(βk) does not hold. Combining
this with Eq. (3.73) an estimate of the density of states from simulation k can be obtained:

Ω̂ik =
1

∆E
· Hik

Mk
· Z(β)

e−βEi
. (3.76)
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3.6.1.2 Optimizing the estimate of the density of states

To construct an optimal estimator for the density of states a weighted combination of the
independent estimates Ω̂ik from the K individual simulations can be formed:

Ω̂i =
K

∑
k=1

rik · Ω̂ik (3.77)

Here relative weights rik, which are independent for each energy bin i, have been
introduced. They are subject to the constraint

K

∑
k=1

rik = 1. (3.78)

As long as the Ω̂ik are not biased, which could be a consequence of the discretization
applied earlier, Ω̂i is an unbiased estimator for any choice of rik. A choice of rik deemed
“optimal” is the one that minimizes the variance

δ2Ω̂i =

〈(
Ω̂i − 〈Ω̂i〉

)2
〉

= 〈Ω̂2
i 〉 − 〈Ω̂i〉2. (3.79)

Since the Ω̂ik are independent for each i, the variance results in

δ2Ω̂i =
K

∑
k=1

rik
2 · δ2Ω̂ik. (3.80)

To minimize δ2Ω̂i under the constraint (3.78) one can introduce a Lagrange multiplier λ

and solve

∂

∂rik

[
δ2Ω̂i − λ

(
K

∑
k′=1

rik′ − 1

)]
= 0, (3.81)

which yields rik = λ/(2 · δ2Ω̂ik) and another application of Eq. (3.78) gives λ =

1/
[
∑K

k=1[2 · δ2Ω̂ik]
−1
]
. Thus one has

rik =
[δ2Ω̂ik]

−1

∑K
k′=1[δ

2Ω̂ik′ ]−1
(3.82)

and the optimal estimator for the density of states results in

Ω̂i =
∑K

k=1[δ
2Ω̂ik]

−1 · Ω̂ik

∑K
k=1[δ

2Ω̂ik]−1
(3.83)
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with corresponding variance

δ2Ω̂i =

[
K

∑
k=1

[δ2Ω̂ik]
−1

]−1

. (3.84)

3.6.1.3 Estimation of histogram uncertainties

To evalutate the expressions (3.83) and (3.84) the uncertainties in the estimates of the
density of states from the individual simulations Ω̂ik need to be estimated. In the
expression (3.76) β, Ei, ∆E and Mk are parameters known exactly. While the partition
function Z(β) is unknown beforehand, it has a well-defined value as a constant of
normalization. Here it does not enter as a quantity estimated with uncertainty. The
squared uncertainty δ2Ω̂ik thus stems solely from the uncertainty of the measured
histogram count and can now be stated in dependence of Z(β):

δ2Ω̂ik =
δ2Hik · Z(β)

∆E ·Mk · e−βEi
. (3.85)

For the evaluation of δ2Hik it is fruitful to express Hik as a scaled time average of the
characteristic function ψi(E), defined in Eq. (3.74), evaluated on the correlated energy
measurements sampled in the simulation:

Hik = Mk ·
1

Mk

Mk

∑
m=1

ψikm = Mk · ψ̂ik, ψ̂ik =
1

Mk

Mk

∑
m=1

ψikm. (3.86)

Then, considering temporal autocorrelations of ψik with the statistical inefficiency factor
gik = 1 + 2τint(ψik), as introduced in Sec. 2.5, one finds:

δ2Hik = Nk
2 ·

σ2
ψik

Mk/gik
= gik Mk

[
〈ψik

2〉 − 〈ψik〉2
]

= gik Mk 〈ψik〉 [1− 〈ψik〉] = gik 〈Hik〉
[

1− 〈Hik〉
Mk

]
, (3.87)

where ψi(E)2 = ψi(E) as ψi only takes values of 1 and 0. Often it is assumed that there
are sufficiently many energy bins so that each individual bin is sparsely populated. Then
〈Hik〉/Mk � 1 and one can simplify Eq. (3.87) to

δ2Hik ≈ gik 〈Hik〉. (3.88)

However, as energy fluctuations in the canonical ensemble typically are described by
a narrow probability distribution around the expectation value, this claim should be

63



3 Methods applied to the compass model

tested on a case by case basis. Taking the limit 〈Hik〉/Mk → 0 corresponds to assuming
a Poisson distribution for the histogram entries.

The statistical inefficiency gik reflects the number of measurements that is necessary
to sample the energy bin without correlations. In general it depends on bin index, bin
width and temperature. Kumar et al. left out all three of these dependencies in their
presentation [61], but depending on the simulation method correlation times can be
expected to be shorter at higher temperatures and especially in the vicinity of phase
transitions, which cause (super-) critical slowing down. Ferrenberg and Swendsen
allowed for a temperature dependence of the statistical inefficiency factor [60], but
proposed to calculate it from the the autocorrelation time of the whole energy time series,
neglecting any variation for different bins, although depending on the energy landscape
the simulation can be expected to spend longer times in certain regions of phase space
than in others. Furthermore the relation between the statistical uncertainty of the time
average of some observable such as the energy and the uncertainties of the individual
histogram counts is not trivial.

The full dependency on temperature and bin index is acknowledged in later work by
Gallicchio et al. [64]. A clear derivation is contained in the paper by Chodera et al. [63].

Up to some to discretization error 〈Hik〉 can be evaluated to

〈Hik〉 ≈ Mk∆Epi(βk) = Mk∆EΩi e−βkEi /Z(β)

= Mk∆EΩm e−βkEi+ fk , (3.89)

where the dimensionless free energies fk = − lnZ(βk) have been introduced. The best
estimate of 〈Hik〉 is obtained using the best estimate of Ωi:

Ĥik = Mk∆EΩ̂i e−βkEi+ fk . (3.90)

By inserting this into Eq. (3.87) one obtains an estimate of the squared uncertainty δ2Hik:

δ2Ĥik = gik Mk∆EΩ̂i e−βkEi+ fk(1− ∆EΩ̂i e−βkEi+ fk) (3.91)

and subsequently by the means of Eq. (3.85) an estimate of δ2Ω̂ik:

δ2Ω̂ik =
gikΩ̂i(1− ∆EΩ̂i e−βkEi+ fk)

Mk∆E e−βkEi+ fk
. (3.92)
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3.6.1.4 Equations for estimators of the density of states

Finally using Eqs. (3.76) and (3.92) the optimized estimator for the density of states from
Eq. (3.83) can be evaluated to:

Ω̂i =
∑K

k=1 Hik · [gik(1− ∆EΩ̂i e−βkEi+ fk)]−1

∑K
k=1 Mk∆E e−βkEi+ fk [gik(1− ∆EΩ̂i e−βkEi+ fk)]−1

. (3.93)

The nonlinear dependency on Ω̂i vanishes if the preceding calculations are carried out
with the approximation (3.88):

Ω̂i =
∑K

k=1 Hik · gik
−1

∑K
k=1 Mk∆E e−βkEi+ fk · gik

−1
. (3.94)

In both cases there remains a dependency on fk, which can be evaluated from an estimate
of Ω̂i to:

fk = − ln
I

∑
i=1

Ω̂i∆E e−βkEi . (3.95)

By iteration of Eqs. (3.93) and (3.95) or Eqs. (3.94) and (3.95) the fk can be determined
in a self-consistent manner for all of the original inverse temperatures βk. The Ω̂i and
fk are expected to converge towards a fixed point eventually, although there is neither
a guarantee for convergence nor an estimate for the speed of convergence. In practice
convergence is usually quite fast from arbitrary starting values, but an educated “first
guess” can be beneficial.

Instead of minimizing the variance of the estimator Ω̂i, Bartels and Karplus [65] have
used a maximum likelihood approach to derive the same set of equations (3.94) and
(3.95), but neglected differences of autocorrelation times. In their language statistical
inefficiencies would be less easy to take into account.

Under the assumption that the approximation (3.88) is valid, one has

δ2Ω̂ik =
Ω̂i

gik
−1Mk∆E e−βkEi+ fk

(3.96)

and by Eq. (3.84) there is also an estimate for the statistical uncertainty of the estimate of
the density of states:

δ2Ω̂i =
Ω̂i

∑K
k=1 gik

−1Mk∆E e−βkEi+ fk
. (3.97)

Combining this with Eq. (3.94), the squared relative uncertainty of the estimated density
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of states can be calculated:

δ2Ω̂i

Ω̂2
i

=

[
K

∑
k=1

Hik · gik
−1

]−1

(3.98)

In the case of totally uncorrelated data, i.e. if all gik = 1, it is equal to the inverse of the
total number of samples in energy bin i.

3.6.1.5 Estimating observables

Once an estimate of the density of states has been obtained, it can be used to estimate
expectation values of observables at arbitrary temperatures β that lie within the range of
original simulation temperatures { βk } or slightly outside of it.

It is straightforward to estimate the expectation values of arbitrary functions of the
energy 〈 f (E)〉β. Since

〈 f (E)〉β =

∫
dEΩ(E)e−βE f (E)∫

dEΩ(E)e−βE (3.99)

an estimator based on the estimated density of states is

f̂ (E, β) =
1
Ẑ(β)

I

∑
i=1

∆EΩ̂ie−βEi f (Ei) with

Ẑ(β) =
I

∑
i=1

∆EΩ̂ie−βEi . (3.100)

For instance an estimator for the heat capacity CV = kBβ2(〈E2〉 − 〈E〉2) is

ĈV(β) = kBβ2


 1
Ẑ(β)

I

∑
i=1

∆EΩ̂i e−βEi [Ei]
2 −

[
1
Ẑ(β)

I

∑
i=1

∆EΩ̂i e−βEi Ei

]2

 (3.101)

and the probability density function of the energy p(E′|β) = 〈δ(E− E′)〉β can be esti-
mated for discretized energy points Ei via

p̂i(β) = Ω̂ie−βEi /Ẑ(β). (3.102)

Moreover expectation values of functions f (O) of an observable O that is not a function
of the energy can also be estimated easily. One could extend Eq. (3.100) using a
two-dimensional histogram of E and O, but this can become quite cumbersome in
the implementation and potentially introduces additional systematic errors due to the
discretization of continuous observables. A better alternative is to formulate an estimator
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3.6 Multiple histogram reweighting

Ô(β) for the expectation value 〈O〉β that makes direct use of the time series {Okm}Mk
m=1

of sampled observable measurements from the K simulations. Based on Eqs. (3.71) and
(3.102) one can write for discretized energies

Ô(β) =
1
Ẑβ

I

∑
i=1

Ω̂i∆Ee−βEiÔi, (3.103)

where Ôi is an estimator for Oi, the mean of O over all system configurations with an
energy that lies within energy bin i:

Oi =

∫
dxO(x)ψi(E(x))∫

dxψi(E(x))
, (3.104)

which can be estimated by considering the data from all K simulations:

Ôi =
1
Hi

K

∑
k=1

Mk

∑
m=1

ψikmOkm, (3.105)

where Hi = ∑K
k=1 Hik is the total number of sampled configurations from all simulations

that are consistent with energy bin i. Put together one has

Ô(β) =

I

∑
i=1

∆EΩ̂ie−βEiÔi

I

∑
i=1

∆EΩ̂ie−βEi

=

I

∑
i=1

Ω̂ie−βEi
1
Hi

K

∑
k=1

Mk

∑
m=1

ψikmOkm

I

∑
i=1

Ω̂ie−βEi
1
Hi

K

∑
k=1

Mk

∑
m=1

ψikm

︸ ︷︷ ︸
=1

=

K

∑
k=1

Mk

∑
m=1
Okmwkm(β)

K

∑
k=1

Mk

∑
m=1

wkm(β)

(3.106)

with weights that are defined by

wkm(β) =
I

∑
i=1

ψikmΩ̂ie−βEi

Hi
, (3.107)

where only one term in the sum is not zero. These weights need only be determined up
to a factor of normalization and can be computed once to be used in the estimation of
expectation values of any observable function at an inverse temperature β. It may be
advantageous to use Eq. (3.106) instead of Eq. (3.100) to estimate functions of the energy
to reduce discretization error.
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3.6.2 Non-iterative estimation of the density of states

An alternative to the iterative solution of Eqs. (3.94) and (3.95) has been proposed by
Fenwick [66]. Instead of optimizing a linear combination of individual simulation
estimates of the density of states Ω̂ik = Hik/[∆EMke−βkEi+ fk ], this approach deals with
the logarithm of the ratio between estimates for neighboring energy bins:

ŝik = ln
Ω̂i+1,k

Ω̂i,k
= ln

[
Hi+1,k

Hi,k
· e−βEi

e−βEi+1

]
= ln Hi+1,k − ln Hi,k + β∆E. (3.108)

kB · ŝik is an estimate for the change of the microcanonical entropy between energies Ei

and Ei+1. Then an optimized estimate ŝi is computed from the individual simulation
estimates in an analogical manner to Eq. (3.83), where ŝik is only taken into account for
Hi+1,k > 0 and Hik > 0:

ŝi = ln
Ω̂i+1

Ω̂i
=

∑K
k=1 ŝik[δ

2ŝik]
−1

∑K
k=1[δ

2ŝik]−1
. (3.109)

The error weights δ2ŝik are computed in Ref. [66] by error propagation in a first order
approximation:

δ2ŝik ≈
[

∂ ŝik

∂Hik

]2

δ2Hik +

[
∂ ŝik

∂Hi+1,k

]2

δ2Hi+1,k (3.110)

Subsequently Poisson distributed histogram counts are assumed, which corresponds
to the approximation (3.88), and autocorrelations are neglected, so that δ2Hik = 〈H〉ik.
Then the expectation value of the histogram count is estimated by the histogram actually
measured in the simulation: δ2Ĥik = Hik, which leads to the following expression to be
used as error weights in Eq. (3.108):

δ2ŝik =
1

Hik
+

1
Hi+1,k

=
Hik + Hi+1,k

Hik Hi+1,k
. (3.111)

Then Eq. (3.109) can be evaluated directly. Since the density of state is only defined up to
a factor of proportionality, an estimate of its logarithm can be constructed for all energy
bins i, starting from some arbitrarily chosen ln Ω̂1:

ln Ω̂i+1 = ln Ω̂i + ŝi (3.112)

The implementation of this method poses fewer numerical difficulties then the traditional
approach of Sec. 3.6.1 and the density of states can be computed in a single pass.
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3.6 Multiple histogram reweighting

One should note that the estimation of the uncertainty in Eq. (3.110) is not really
correct because it assumes the histogram counts Hik and Hi+1,k to be uncorrelated. But
since every configuration sampled in a simulation can only fall into a single energy bin,
the energy histograms are actually purely anticorrelated. Making use of the characteristic
function defined in Eq. (3.74), their covariance can be calculated directly:

Cov [Hik, Hi+1,k] = 〈Hik Hi+1,k〉 − 〈Hik〉〈Hi+1,k〉

=
Mk

∑
m1=1

Mk

∑
m2=1
〈ψikm1 ψi+1,k,m2〉︸ ︷︷ ︸

=0

−〈Hik〉〈Hi+1,k〉

= −〈Hik〉〈Hi+1,k〉
= −Mk

2 pi(βk)pi+1(βk). (3.113)

A version of Eq. (3.110) that takes these crosscorrelations into account is then:

δ2ŝik ≈
[

∂ ŝik

∂Hik

]2

δ2Hik +

[
∂ ŝik

∂Hi+1,k

]2

δ2Hi+1,k+

+ 2
[

∂ ŝik

∂Hik

] [
∂ ŝik

∂Hi+1,k

]
Cov [Hik, Hi+1,k] . (3.114)

Using the estimate 〈Hi〉 ≈ Hi this evaluates to

δ2ŝik ≈
Hik + Hi+1,k

Hi,k Hi+1,k
+ 2

[
1

Hik

] [ −1
Hi+1,k

]
[−Hik Hi+1,k]

=
Hik + Hi+1,k

Hik Hi+1,k
+ 2, (3.115)

but the directly measured Hik by itself is not the best estimate for its expectation value
〈Hik〉 that can be made from the simulation data. No information from the simulations
conducted at temperatures β 6= βk is taken into account, in contrast to the estimate from
Eq. (3.90) used in the traditional approach. In the light of this it can be assumed that
the estimator in Eq. (3.109) with the error weights from Eq. (3.111) is not necessarily the
optimal choice.

Since the estimated ŝi is constructed from ratios of anticorrelated quantities based
on energy bins i and i + 1, it generally seems plausible that the statistical errors of the
individual quantities are amplified in the combination. The method outlined in Sec. 3.6.1
is less susceptible to such effects because Ω̂i is estimated primarily from histogram
counts in the i’th bin only. The other energy bins only enter in the normalizing constant
Z(βk) = e− fk .

69
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3.6.3 Application to parallel tempering simulations

As mentioned further above, the multiple histogram reweighting method as outlined
in Sec. 3.6.1 is very useful in the context of parallel tempering simulations. However,
it should be noted that the previously described method has been contrived for the
analysis of independent simulations at different temperatures. In parallel tempering on
the other hand, separate configurations of the studied system are simulated in a number
of replicas that are no longer fully independent. Correlations between replicas are
introduced by the swapping of temperatures during the replica exchange update. When
a proposed exchange move is accepted, the configuration that is currently identified
with a certain temperature is changed considerably because it has been exchanged with
that of a different replica.

When the multiple histogram method is applied, these correlations are usually ignored.
The conventional approach is to take the sampled configurations from all the replicas
and to reorder them into pseudo-trajectories at constant temperatures. Chodera et al.
argue [63] that by treating these temperature-grouped trajectories as if they had been
sampled in independent canonical simulations, autocorrelation times are underestimated
because the parallel tempering update is treated just like a regular single temperature
Monte Carlo update. Accordingly this neglecting of crosscorrelations would lead to
wrongly estimated statistical inefficiencies gik in Eqs. (3.93) and (3.94) and a no longer
optimal estimator Ω̂i. To circumvent this problem they propose a scheme in which
density of states estimators from individual replicas instead of temperatures are optimized.
In this scheme the replica time series are treated as if they came from independent
simulated tempering simulations. But the single replica trajectories are still not fully
statistically independent, as they are coupled by the exchange of temperatures. The
authors of Ref. [63] claim this to be a minor effect, which is dominated by the proper
capture of the correlations between successively sampled configurations in each replica.

By still using the index k to label replicas, but introducing also the new index l
to label inverse temperatures { β1, . . . , βl , . . . , βK } because during the simulation each
replica now visits different temperature values, a generalization of Eq. (3.73) leads to the
following estimator for the probability to sample an energy Ei in replica k:

p̂ik =
K

∑
l=1

Mkl

Mk
· Ω̂ike−βl Ei

Z(βl)
= Ω̂ik

K

∑
l=1

Mkl

Mk
· e−βl Ei+ fl , (3.116)

where Mkl/Mk is the fraction of configurations sampled at βl in replica k during the
whole simulation and the dimensionless free energy parameters fl = − lnZ(βl) remain
functions solely of temperature. This probability no longer has a clear physical meaning
as it is a joint quantity for all simulation temperatures. Nevertheless, it can be estimated
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3.6 Multiple histogram reweighting

by the histogram Hik in which the occurrences of energy bin i during the simulation
of replica k at all temperatures βl is counted. If the energy bins have been chosen
fine enough for discretization errors to be negligible, one can write the equivalent of
Eq. (3.75):

p̂ik ≈
1

∆E
· Hik

Mk
(3.117)

and by rearranging Eq. (3.116) an estimator for the density of states at energy bin i in
replica k is obtained:

Ω̂ik =
Hik

∑K
l=1 Mkl∆Ee−βl Ei+ fl

. (3.118)

Under the assumption that the single histogram bins are sparsely populated, which
is reasonable if the replica visits many temperatures and hence many energy levels
during the simulation, the arguments of Sec. 3.6.1.3 lead to the following estimate of the
statistical uncertainty of the density of states:

δ2Ω̂ik =
gikΩ̂i

∑K
l=1 Mkl∆Ee−βl Ei+ fl

, (3.119)

where gik is now the statistical inefficiency of energy bin i computed from the time series
of replica k. Then the optimized estimator of the density of states given in Eq. (3.83), in
which the estimates from all K replicas are combined, can be evaluated to

Ω̂i =
∑K

k=1 Hik · gik
−1

∑K
k=1 gik

−1 ∑K
l=1 Mkl∆Ee−βl Ei+ fl

. (3.120)

It should be noted that in this estimate the information of the relative probability of the
energy bins at the various temperatures is no longer used directly. Histograms are only
computed over the non-physical replica trajectories and then weighted globally by the
proportion of simulation time spent at the individual temperatures.

In the same way as in Sec. 3.6.1.5, expectation values of observables O at arbitrary
temperatures β can then be estimated as weighted averages over the replica time series.
Eqs. (3.106) and (3.107) hold again:

Ô(β) =

K

∑
k=1

Mk

∑
m=1
Okmwkm(β)

K

∑
k=1

Mk

∑
m=1

wkm(β)

, (3.121)
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wkm(β) =
I

∑
i=1

ψikmΩ̂ie−βEi

Hi
, (3.122)

where the index k now distinguishes only the replica. The information about the current
temperature which an observable measurement Okn has been made at is not used any
more. The sum over i in Eq. (3.122) reduces to a single term. Hi = ∑K

k=1 Hik is the total
number of times energy bin i has been sampled in all replicas.

In general it is not clear whether the more careful consideration of inter-replica cross-
correlations in the way described in this section delivers more correct results than the
more naive approach, where trajectories are pre-sorted by temperatures, but where also
no physical temperature information is discarded.

3.6.4 Optimizing quantities and estimating statistical uncertainties

In Sec. 3.6.1.5 a method for time series reweighting based on the multiple histogram
analysis has been presented. It allows the evaluation of arbitrary functions of observables
at any inverse temperature β. It can easily be combined with Brent’s algorithm for
numerical minimization without derivatives [67]. The algorithm combines bracketing
by the golden section with parabolic interpolation to find the minimum of a function
within numeric machine precision. This way the number of points, where the function
has to be evaluated, is kept low. This is beneficial because the reweighting procedure
can be computationally expensive.

The maxima of a susceptibility or heat capacity can be found by applying it on −χ(β)

and −C(β). Likewise the algorithm can be used to find the inverse temperature βeqH of
phase coexistence by minimizing the peak height difference of bimodal histograms of an
observable.

Statistical uncertainties of expectation values and these optimized quantities can be
estimated by carrying out the whole multiple histogram analysis on jackknife blocked
subsets of the data as described in Sec. 2.5.3.

3.6.5 Choices for the compass model

To see if the various methods for the estimation of the density of states that have been
presented above deliver results of different quality, I have made extensive comparisons
with the two-dimensional Ising model, for which exact results are readily available. The
results are presented in appendix B.

Whether or not autocorrelation times were taken into account for statistical inefficiency
factors made little difference there. Also the careful distinction of different autocorrela-
tion times for different bins of the energy histograms did not lead to any improvements,
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rather this might actually open the door for more numerical errors. The little role
different inefficiency factors play can be understood by realizing that they are only
effective as relative weights between energy histograms with non-negligible overlap. But
in realistic models only histograms from closely separated temperatures overlap and at
these temperatures also autocorrelation times are very similar.

Furthermore, with parallel tempering the inclusion of autocorrelation times in the
estimations lead to systematically wrong results. The method presented in Sec. 3.6.3,
which has been devised to properly deal with correlations stemming from replica
exchanges, actually delivered even stronger deviations. For this work I have therefore
decided to always set the inefficiency factor to unity: gik = 1 and to sort the replica
trajectories by temperature before commencing the multiple histogram analysis. But in
general the question how to correctly handle correlated statistics generated in parallel
tempering simulations remains open.

The non-iterative method of Sec. 3.6.2 has only been used as a quick way to get
good starting values for the iterations, on its own it has shown to be rather susceptible
to statistical errors. But compared to a naive choice of Ωi,0 ≡ 1 several thousands of
iteration steps could be saved in some cases with this choice of Ωi,0.

Generally the whole energy range sampled in a parallel tempering simulation has
been discretized into 1000 bins. Expectation values have then been calculated with the
scheme of Sec. 3.6.1.5, which avoids additional discretization errors.

3.7 Technical aspects

To obtain the numerical results that will be presented in the following two chapters
I have implemented the algorithms described in this chapter in the form of several
elaborate C++ programs. The g++-compiler from the GNU Compiler Collection version
4.4.5 was used. The programs are accompanied by many Python and shell scripts to
assist with the management of the simulation runs, data analysis and preparation of
graphics.

3.7.1 Implementation of the simulations

To run the Monte Carlo simulations of the different models studied in this work with
the various possible combinations of update algorithms I have written an object-oriented
framework that allows all parameters to be set at run-time in the form of configuration
files. The time series of measurements are written to disk and stored for later analysis
by separate programs.

Most of the parallel tempering simulations have been run on the “Grawp” Linux
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computer cluster at the ITP, which consists of 30 nodes, each equipped with two dual
core AMD Opteron 2218 processors. The simulations were run in parallel with typically
one replica assigned to one processor. In my implementation, temperature exchanges are
coordinated by a master process, which after a set number of Monte Carlo sweeps gathers
energy information from all replicas, determines the new distribution of temperatures
and redistributes it among the replicas. For communication between the processes the
distributed-memory parallelization library Open MPI [68] is used. Essentially only calls
to the two routines MPI_Gather and MPI_Scatter are necessary. The computational
overhead for communication is negligible compared with the time spent on canonical
updates.

Random number generation

The correctness of the results obtained in Monte Carlo simulations depends crucially on
the statistical quality of the mathematical recursion used to provide the pseudo-random
numbers. Since generally a large portion of the execution time is spent on the generation
of these numbers, also the speed of the random number generator is very important. For
an introduction see for instance the reviews by Janke [69] or Katzgraber [70].

A fast generator of high-quality pseudo-random numbers, that is very well tested, is
the Mersenne Twister [71], which employs a generalized feedback shift register. In its
variation mt19937 it has a very long period length of 219937 − 1 ≈ 106001. I have used a
highly optimized implementation, which is adapted to the processor architecture of the
computer cluster and specialized in the generation of floating point random numbers:
the double precision SIMD-oriented Fast Mersenne Twister (dSFMT, [72, 73]).

To avoid correlations between the different processes of the parallel tempering simula-
tions each should use an independent stream of pseudo-random numbers. To achieve
this each process uses a different initial seed for its generator. These seeds are generated
randomly by the master process in the beginning and then distributed. Due to the very
long period length of the Mersenne Twister it is very unlikely that the various streams
overlap.

3.7.2 Implementation of the multiple histogram analysis

I have implemented most of the data analysis in one C++ program, which performs
the multiple histogram analysis at its core. To reduce the necessary run time during
the iterative estimation of the density of states and the time series reweighting proce-
dure to compute estimates of expectation values, shared-memory parallelization with
OpenMP [74] has been used to evaluate multiple sums concurrently.
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Logarithmic computations

Special care must be taken for all calculations involving partition functions Z(βk) or
densities of states Ω(Ei). Since they grow exponentially with the total system energy, for
large systems their range can quickly exceed that of floating point numbers representable
on the computer. Standard double precision numbers have a range from about 10−308 to
10+308. But for instance in the N = 1282 Ising model, the order of magnitude of Ω(E)
ranges from 100 to about 104930, which cannot be stored directly in a standard floating
point number without overflows.

For this reason all calculations involving these quantities are not performed directly
on them, but on their logarithms, which have a much smaller dynamic range. Sums
like those in Eqs. (3.94), (3.95) or (3.106) are always evaluated in terms of ln Ω(Ei) and
fk = − lnZ(βk).

To calculate the logarithm of the sum of two numbers x1 and x2, which are only known
in terms of their logarithms l1 = ln x1 and l2 = ln x2, the following rule can be used:

ln(x1 + x2) = ln el1 + el2) = ln(el1 [1 + el2−l1 ])

= l1 + ln[1 + el2−l1 ], (3.123)

where the exponential can be safely evaluated without risk of overflow if l2 <= l1.
Otherwise the sum has to be evaluated with l2 and l1 exchanged:

ln(x1 + x2) = l2 + ln[1 + el1−l2 ]. (3.124)

Usually α ≡ e−|l1−l2| is very small. To evaluate ln[1 + α] accurately in this case, the
specialized standard C library function log1p can be used.

Iterative solution of equations

To estimate the density of states and the free energy parameters fk, Eqs. (3.94) and (3.95)
are solved by direct iteration. As a criterion of convergence the quantity

∆2 = ∑
k

[
Z (i)

k −Z
(i−1)
k

Z(i)
k

]2

= ∑
k

[
1− e f (i)k − f (i−1)

k

]2
(3.125)

is computed at each iteration (i). It measures the relative change of the estimated
partition functions since the last iterative step. Once ∆2 falls below 10−14, the solution is
deemed to have converged.

A good choice of starting values f (0)k can save many iterations. To find them quickly
the non-iterative method of Sec. 3.6.2 is very suitable. The convergence may be sped up
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further by procedures like the Newton-Raphson method or specialized algorithms like
the one developed by Bereau and Swendsen [75], but for this work the direct iteration
appeared to be fast enough in all cases.

Estimation of statistical inefficiencies

To calculate the bin statistical inefficiencies gik = 1 + 2τint,ik used for the weights, the
correlation function Cik(t) is directly summed up:

τ̂ik,int = ∑
t=1

Ĉik(t). (3.126)

As suggested by Chodera et al. [63] the sum is stopped at the gap time t where Ĉik(t) < 0
for the first time. The evaluation of the sums can be done in a single pass over the time
series for all energy bins i.
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model

In the following I report the results of a study of the directional ordering transition in the
two-dimensional classical compass model using periodic and screw-periodic boundary
conditions. As in the higher-precision studies by Wenzel et al. [9, 10] I find the finite-size
scaling of the results obtained on regular periodic lattices to be problematic. In contrast,
the results obtained with screw-periodic boundary conditions scale consistently with the
expectations for a continuous phase transition without higher-order corrections. They
comply with the results published in Ref. [10], where fluctuating boundary conditions
were used. Since a large part of my computer code for simulation and data evaluation is
shared with the three-dimensional case, this is also an indication for the trustworthiness
of the results presented in the next chapter. All numeric results quoted here and in the
following are given in units with kB = 1 and |J| = 1.

4.1 The directional ordering transition

The two-dimensional compass model has been simulated on square lattices with linear
sizes L ∈ {16, 20, 24, 36, 48, 60, 72, 84, 96, 112, 128, 160, 208, 256} in each case both with
regular and screw-periodic boundary conditions. Parallel tempering has always been
used with a number of temperature points ranging from 16 to 24. They have been chosen
linearly spaced for L ≤ 36 and according to the constant entropy difference scheme for
L ≥ 48, where specific heat capacity data from smaller lattices has been used. Replica
exchanges have been proposed every 20 sweeps. The simulations at the various lattice
sizes have each been run for a number of sweeps ranging from 106 to 5 · 106. Here the
combination of 2L cluster updates and N = L2 single-spin Metropolis update steps is
counted as one sweep.

The behavior of the order parameter

D =
1
N

∣∣∣∣∣J
N

∑
i=1

(
sx

i sx
i+x̂ − sy

i sy
i+ŷ

)∣∣∣∣∣ , (4.1)
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whose estimates are shown in Fig. 4.2 on p. 83, and of its susceptibility

χ = N(〈D2〉 − 〈D〉2), (4.2)

shown in Fig. 4.3 on p. 84, clearly indicate the existence of a temperature-driven phase
transition with directional ordering D > 0 realized in the low temperature phase (higher
β). It is immediately obvious that finite-size effects are stronger with regular periodic
boundary conditions: With screw-periodic boundary conditions the locations of the
maxima of the susceptibility βmax(L) converge much faster to their infinite system size
limit. Furthermore, the curves of the Binder parameter related to D

Q2 = 1− 1
3
〈D4〉
〈D2〉2 (4.3)

in Fig. 4.4 on p. 85 cross very close to each other with screw-periodic boundary conditions,
while with regular periodic boundary conditions there is a very strong size-dependence,
which does not agree with the conventional expectations for the scaling at a continuous
phase transition.

To find the maxima of the susceptibility, I have applied Brent’s algorithm on the
results of the multiple histogram analysis of the time series data. The resulting transition
point locations βmax(L) and susceptibility values χmax(L) are listed in Table 4.1. The
uncertainties given in parentheses have been estimated by carrying out the whole
procedure on 20 jackknife-resampled blocks. With the available data the locations
βmax(L) of the increasingly sharper peaks could be determined quite precisely, whereas
the relative statistical uncertainty of the values χmax(L) is somewhat higher.

From finite-size scaling theory the pseudo-transition temperatures Tmax(L) = 1/kBβmax(L)

are expected to fulfill the relation

Tmax(L) = Tc

(
1− aL−1/ν + · · ·

)
(4.4)

with the critical temperature Tc and the critical exponent of the correlation length ν.
Further corrections to the dominating power law behavior are hidden in the ellipsis in
Eq. (4.4).

To extrapolate Tc and ν I have performed least squares fits of the data from Table 4.1
to the relation (4.4). While it is preferable to include many data points into the fit,
additional scaling corrections, that have not been considered here, are expected to
become important especially with the smallest lattices. For this reason various different
ranges have been tried for the fit, where the lattice sizes below a varying cut-off Lmin

were excluded. The results are collected in Table 4.2.
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4.1 The directional ordering transition

Table 4.1: Locations and values of the maxima of the susceptibility χ in the two-dimensional compass
model with regular periodic (PBC) and screw-periodic (SBC) boundary conditions

L βmax(L) χmax(L)

PBC SBC PBC SBC

16 4.892(4) 6.194(5) 6.73(1) 8.32(3)
20 5.003(3) 6.309(5) 9.51(3) 11.82(5)
24 5.129(3) 6.387(5) 12.68(5) 15.94(8)
36 5.495(3) 6.543(6) 25.8(2) 31.8(3)
48 5.773(3) 6.612(4) 45.4(3) 52.7(5)
60 5.982(1) 6.655(3) 71.8(4) 77.0(4)
72 6.141(1) 6.684(2) 106.9(8) 104.5(7)
84 6.264(2) 6.705(3) 146(1) 136.3(9)
96 6.361(1) 6.726(3) 199(2) 172(2)
112 6.462(1) 6.739(3) 265(2) 225(2)
128 6.541(1) 6.751(2) 338(2) 281(2)
160 6.649(1) 6.768(3) 495(7) 421(6)
208 6.741(1) 6.784(3) 740(15) 651(9)
256 6.784(2) 6.799(2) 1034(19) 950(18)

Observing the quantity χ2
dof, it is apparent that with periodic boundary conditions the

conformity of the data with the scaling ansatz (4.4) is better for high cut-offs Lmin. Still,
with this simple approach the discrepancy is high in all cases and it is clear that further
correction terms or simulations on larger lattices would be necessary to obtain reliable
results.

With screw-periodic boundary conditions on the other hand, the fit which includes all
data points available starting from Lmin = 16 already has a χ2

dof-value of order unity and
the estimated uncertainties of the parameters Tc and ν are the smallest of all the ranges.
The final results taken from this fit

Tc = 0.14617± 0.00006,

ν = 1.00± 0.01 (4.5)

agree with those obtained using fluctuating boundary conditions in Ref.[10]. Plotted over
1/L, Tmax scales linearly in Fig. 4.1(a) on p. 82 with screw-periodic boundary conditions,
whereas the asymptotic regime of Eq. (4.4) is not reached on the studied lattice sizes by
the periodic boundary conditions data, which show multiple bends. From the figure
it is conceivable that the curve for periodic boundary conditions may meet the one for
screw-periodic boundary conditions for L > 256.

Standard finite-size scaling theory predicts a power law behavior of the maximum
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4 Results for the two-dimensional compass model

Table 4.2: Results of non-linear least squares fits to estimate Tc and ν for the two-dimensional compass
model from the data in Table 4.1 according to Eq. (4.4) with regular periodic (PBC) and screw-periodic
(SBC) boundary conditions. Here n is the number of included data points ranging from the smallest
considered lattice size Lmin up to the largest Lmax = 256. χ2

dof = χ2/n−3 is a measure to help with the
estimation of the validity of the fit. The table only includes parameter sets where the fitting procedure
converged. The results taken finally are marked bold.

PBC SBC

n Lmin Tc ν χ2
dof Tc ν χ2

dof

14 16 0.14617(6) 1.00(1) 0.75
13 20 0.14619(7) 0.99(2) 0.75
12 24 0.136(2) 1.28(9) 281.35 0.14620(8) 0.99(2) 0.83
11 36 0.140(1) 1.06(6) 109.88 0.14600(9) 1.08(4) 0.43
10 48 0.1414(7) 0.95(4) 47.03 0.1460(1) 1.08(6) 0.49
9 60 0.1420(6) 0.90(4) 31.81 0.1460(2) 1.08(8) 0.57
8 72 0.1427(5) 0.84(4) 20.16 0.1460(2) 1.0(1) 0.68
7 84 0.1434(5) 0.77(4) 12.10 0.1459(4) 1.1(2) 0.82
6 96 0.1438(5) 0.73(5) 10.69 0.1444(8) 2.0(5) 0.14
5 112 0.1445(4) 0.64(5) 5.14 0.144(1) 2(1) 0.20
4 128 0.1449(5) 0.58(6) 5.27

values of the susceptibility:

χmax(L) = bLγ/ν + · · · , (4.6)

with the critical exponents γ of the susceptibility and ν of the correlation length. If the
power law in Eq. (4.6) is the dominating behavior, χmax(L) should scale monotonically
with L. In Fig. 4.1(b) on p. 82 one can see that this is not the case with regular periodic
boundary conditions, except for maybe the largest lattice sizes. In the plot χmax has been
scaled by a factor of 1/L2 for clarity, which changes the exponent of the expected power
law, but does not influence the condition of monotonicity.

By taking the logarithm on both sides of Eq. (4.6) with the ellipsis dropped, a linear
relationship is obtained:

ln χmax(L) = b̃ +
γ

ν
ln L. (4.7)

Then γ/ν can be estimated by linear fits of the data from Table 4.1 to Eq. (4.7). The
results of such fits are collected in Table 4.3 on p. 82 on p. 82. As expected, the results at
hand with regular periodic boundaries do not match Eq. (4.7) well, which is reflected in
high values of χ2

dof.
The screw-periodic data is in better agreement with the scaling relation: χ2

dof is of
order unity for Lmin ≥ 20. Taking the data range 20 ≤ L ≤ 256, the ratio of exponents
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4.1 The directional ordering transition

results in

γ/ν = 1.712± 0.003. (4.8)

From this estimate the critical exponent γ can be computed by multiplication with
ν = 1.00(1). The uncertainty of γ quoted in the following is a conservative estimate,
calculated as the maximum uncertainty arising from the individual uncertainties εν from
Eq. (4.5) and εx ≡ εγ/ν from Eq. (4.8):

εγ = max { (ν + εν)(x + εx)− x · ν, x · ν− (ν− εν)(x− εx) } (4.9)

This results in the estimate

γ = 1.71± 0.02. (4.10)

The result obtained with fluctuating boundary conditions and higher computational
expenses in Ref. [10] is γ = 1.75(1). The results found here with screw-periodic boundary
conditions agree with this value within error bars if a higher cut-off Lmin of at least 72 is
chosen. Whether this slight discrepancy can be explained by somewhat less favorable
scaling properties of the screw-periodic boundary conditions or by insufficient accuracy
in the determination of the χmax(L) in this work, could only be cleared up by a more
extended examination.

Nevertheless, the findings with screw-periodic boundary conditions agree well with
the claim that the directional-ordering transition in the two-dimensional compass lies in
the universality class of the Ising model in two dimensions, where ν = 1 and γ = 1.75
are known exactly.
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4 Results for the two-dimensional compass model

Table 4.3: Results of linear least squares fits to estimate γ/ν for the two-dimensional compass model from the
data in Table 4.1 according to Eq. (4.7) with regular periodic (PBC) and screw-periodic (SBC) boundary
conditions. From the SBC results for γ/ν, γ is estimated with ν = 1.00(1) (from Table 4.2). Here n is the
number of included data points ranging from the smallest considered lattice size Lmin up to the largest
Lmax = 256. χ2

dof = χ2/n−2 is a measure to help with the estimation of the validity of the fit. Results
referred to in the text are marked bold.

PBC SBC

n Lmin γ/ν χ2
dof γ/ν χ2

dof γ

14 16 1.86(2) 161.10 1.70(1) 6.26 1.70(2)
13 20 1.91(2) 77.07 1.712(3) 1.14 1.71(2)
12 24 1.95(2) 49.03 1.718(3) 0.61 1.72(2)
11 36 1.99(3) 42.26 1.721(5) 0.64 1.72(2)
10 48 1.98(4) 45.98 1.72(1) 0.72 1.72(2)
9 60 2.0(1) 46.59 1.72(1) 0.70 1.72(2)
8 72 1.9(1) 30.22 1.73(1) 0.50 1.73(2)
7 84 1.8(1) 21.72 1.73(1) 0.60 1.73(3)
6 96 1.69(4) 4.72 1.73(1) 0.74 1.73(3)
5 112 1.65(3) 2.72 1.74(2) 0.74 1.74(3)
4 128 1.62(2) 1.00 1.75(2) 0.79 1.75(4)
3 160 1.56(2) 0.16 1.72(5) 0.93 1.7(1)
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Figure 4.1: Finite-size scaling in the two-dimensional compass model with regular periodic (PBC) and
screw-periodic (SBC) boundary conditions. (a) Pseudo-transition points Tmax(L) and extrapolation of
the critical temperature Tc from the SBC data. (b) The scaled susceptibility-maxima χmax(L)/L2 show a
non-monotonic behavior with PBC, whereas no anomaly is apparent with SBC.
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Figure 4.2: Estimates of the order parameter D in the two-dimensional compass model for various lattice
sizes L and inverse temperatures β with (a) regular periodic and (b) screw-periodic boundaries, S = 1.
Markers with error bars are estimates from single-temperature time series. Continuous lines are from
the multiple histogram analysis with faint surrounding lines indicating the 1σ-margin of statistical
uncertainty. Colors and symbols correspond to the same lattice sizes in both plots.
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Figure 4.3: Estimates of the order parameter susceptibility χ in the two-dimensional compass model
for various lattice sizes L and inverse temperatures β with (a) regular periodic and (b) screw-periodic
boundaries, S = 1. Markers with error bars are estimates from single-temperature time series. Continuous
lines are from the multiple histogram analysis with faint surrounding lines indicating the 1σ-margin of
statistical uncertainty. Colors and symbols correspond to the same lattice sizes in both plots.
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Figure 4.4: Estimates of the Binder parameter Q2 in the two-dimensional compass model for various lattice
sizes L and inverse temperatures β with (a) regular periodic and (b) screw-periodic boundaries, S = 1.
Markers with error bars are estimates from single-temperature time series. Continuous lines are from
the multiple histogram analysis with faint surrounding lines indicating the 1σ-margin of statistical
uncertainty. Colors and symbols correspond to the same lattice sizes in both plots.
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4 Results for the two-dimensional compass model

4.2 Local and cluster updates

To check that the cluster update presented in Sec. 3.4.2 produces correct results, I have
also run parallel tempering simulations with purely local Metropolis updates of the
two-dimensional model with both types of boundary conditions considered here on
lattices of sizes L = 36 and L = 60. The resulting estimates of the susceptibility χ(β)

agree well as one can see in Fig. 4.5.
In each case the same number of samples has been used with both update algorithms,

however less than for the results in Sec. 4.1 as with the purely local update more initial
measurements had to be discarded for thermalization. While the results obtained with
the combined cluster and local update presented here are more precise, more spins
are modified in one Monte Carlo sweep with that algorithm than with the purely local
variant. This effect would need to be compensated for a quantitative comparison of the
efficiency of the algorithms.
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(c) PBC, L = 60
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Figure 4.5: Comparison of results for the susceptibility χ from simulations with purely local and combined

cluster and local updates in the two-dimensional compass model with regular periodic (PBC) and
screw-periodic (SBC) boundary conditions on two different lattice sizes. The data points correspond to
the relative differences of the measured values to those measured with purely local updates. (Therefore
they all lie on the zero line for local updates). The error bars show the relative statistical uncertainties of
the measurements within 1σ, estimated with the jackknife method.
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4.3 Typical spin configurations

4.3 Typical spin configurations

In Fig. 4.6 an illustration of typical spin configurations of the two-dimensional L =

16 compass model with regular periodic (PBC) and screw-periodic (SBC) boundary
conditions with S = 1 is given. The configurations shown there are snapshots from
canonical simulations in the disordered phase at βlow = 1.0, the ordered phase at βhigh =

10.0 and at the pseudo-transition point βmax(L) taken from Table 4.1. In preliminary
simulations the expectation value D(β) was estimated and only spin configurations
conforming to that value of D were considered to find the “typical” configurations.

In the low temperature snapshots at β = 10.0 directional ordering is apparent. The
majority of the spins is predominantly aligned with one of the lattice axes. In the case of
regular periodic boundary conditions spins on separate columns of the lattice are aligned
independently of each other. For this reason one part is pointing mostly upwards and
the other part is pointing mostly downwards. With screw-periodic boundary conditions
on the other hand, all spins are linked in one chain along the lattice. Hence the aligned
spins do not point in opposing directions.

In the intermediate temperature snapshots at βmax(L) linear alignment of spins is
already visible to a higher degree than in the high temperature snapshots at βlow.
However, no global order is realized yet. At the same time some groups are aligned
more in x-direction and others more in y-direction.
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4 Results for the two-dimensional compass model

(a) PBC, βlow = 1.0, D = 0.0433 (b) SBC, βlow = 1.0, D = 0.0433

(c) PBC, βmax = 4.892, D = 0.346 (d) SBC, βmax = 6.194, D = 0.382

(e) PBC, βhigh = 10.0, D = 0.718 (f) SBC, βhigh = 10.0, D = 0.723

Figure 4.6: Typical spin configurations in the two-dimensional compass model. Top row: Disordered
configurations. Middle row: Transition states. Bottom row: Directionally ordered configurations.
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5 Results for the three-dimensional
compass model

In this chapter I present the simulation results for the three-dimensional classical compass
model. Parallel tempering has been used for all the principal simulations. The Metropolis
update has been employed together with the linear cluster update. Here one Monte Carlo
sweep is counted as the combination of 3L cluster updates with N = L3 local Metropolis
steps. For the first section of this chapter regular periodic boundary conditions have
been applied. The introduction of screw-periodic boundary conditions in the second
section has lead to substantial improvements.

As an order parameter for directional ordering of the bond energies the quantity

D =
1
N

√
(Ez − Ey)2 + (Ey − Ex)2 + (Ez − Ex)2, (5.1)

has been measured. All numeric results quoted here and in the following are given in
units with kB = 1 and |J| = 1.

5.1 Results with regular periodic boundary conditions

I have studied the three-dimensional model with regular periodic boundary conditions
on lattices of linear sizes from L = 8 to L = 36. The parameters of the parallel tempering
simulations are summarized in Table 5.1 on p. 90. For L ≤ 20 the inverse temperature
points { βk }K

k=1 used in the measurements have been determined by first running short
preliminary simulations on lattices of the same size with arbitrarily chosen temperatures
and then determining a new set with constant energy distribution overlap from that
data. For L ≥ 24 the βk have been chosen with the constant entropy difference scheme,
where heat capacity data from smaller lattices has been used. This has not been an ideal
choice in this case as the heat capacity peak shifts considerably between lattice sizes.
However, for the purposes of this section the quality of the results is sufficient.

In Fig. 5.1(a) on p. 91 the temperature dependence of D as estimated from the
simulations is shown. A thermal phase transition from a disordered high-temperature
(low values of β) phase with D = 0 to an ordered phase with D > 0 at lower temperatures
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Table 5.1: Parameters used in parallel tempering simulations of the three-dimensional compass model with
regular periodic boundary conditions. Listed are the linear lattice sizes L, the corresponding lattice
volumes N = L3, the lowest and highest included inverse temperatures β, the total number of replicas
and temperature points K, the number of Monte Carlo sweeps used for thermalization and measurements
and finally the interval in sweeps between proposed replica exchanges.

Sweeps for Sweeps for Sweeps between
L N β-range K Thermalization Measurement Exchanges

8 512 4 — 20 32 3 · 106 3 · 107
100

12 1728 4 — 20 32 106 7 · 106
10

16 4096 4 — 20 64 106 107
100

20 8000 8 — 12.5 64 1.5 · 106 1.5 · 107
150

24 13824 8 — 10.5 48 2 · 106 2 · 107
100

28 21952 8 — 10.5 48 2.5 · 106 2.5 · 107
100

32 32768 8.3 — 9.5 48 2.5 · 106 2.5 · 107
100

36 46656 8.7 — 9.3 48 3 · 106 3 · 107
100

can clearly be made out. But there are two peculiarities to take note of:

1. The temperature location of the transition shifts considerably with increasing lattice
sizes. This can also be seen in the positions of the maxima of the susceptibility

χ = N(〈D2〉 − 〈D〉2). (5.2)

The estimated χ(β) curves are shown in Fig. 5.1(b) on p. 91 The locations βmax(L)
and values χmax(L) of the maxima are listed in Table 5.2 on p. 92. For lattice sizes
L < 20 the values of βmax(L) seem to converge from higher values down to β ≈ 8.7,
but then start to rise again on the larger lattices.

2. The estimated values of χ approach zero for β→ 0 in the high-temperature phase,
but they remain finite in the low-temperature phase.

The first point is reminiscent of the strong finite-size effects encountered in simulations
of the two-dimensional model with periodic boundary conditions.

The second point can be understood by realizing that χ effectively measures the width
of the probability distribution P(D) of the order parameter. P(D) can be evaluated at the
low temperatures, where χ shows the unexpected behavior by examining the histograms
of D measured in the simulations. An example for L = 16 and β = 20 is shown in
Fig. 5.2(a) on p. 93. The distribution of D is characterized by a structure with multiple
peaks. The configurations in the different groups of D-values all lie in the same range of
energies, which is illustrated by the example in Fig. 5.2(b) on p. 93. Even if the width
of these individual D-peaks shrinks with increasing β, the value of the susceptibility χ

estimated from the simulation data remains on mostly the same level as long as this
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Figure 5.1: D(β) and χ(β) estimated from measurements obtained in simulations of the three-dimensional
compass model with regular periodic boundary conditions for different lattice sizes. Top row: Linear
sizes L = 8, . . . , 20. Bottom row: Linear sizes L = 24, . . . , 36. Markers with error bars are estimates from
single-temperature time series. Continuous lines are from the multiple histogram analysis with faint
surrounding lines indicating the 1σ-margin of statistical uncertainty.

degeneracy is present. In the high-temperature phase, where χ goes to zero with β, the
distribution has only one peak of steadily shrinking width.

The multiple peak structures could only be reproduced in parallel tempering simula-
tions, where the replica exchange process frequently feeds new decorrelated configu-
rations into the low temperature phase. In a canonical simulation after thermalization
configurations corresponding to only one of these D-peaks are realized at least within a
reasonable number of Monte Carlo sweeps. Simulations with different random initial
configurations lead to different peaks of D.
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Table 5.2: Locations and values of the maxima of the susceptibility χ in the three-dimensional compass
model with regular periodic boundary conditions found by multiple histogram reweighting

L βmax(L) χmax(L)

8 12.55(2) 6.48(2)
12 9.24(1) 13.2(1)
16 8.696(3) 25.2(2)
20 8.671(1) 51.0(3)
24 8.778(1) 123(1)
28 8.911(1) 380(8)
32 9.042(1) 1159(16)
36 9.165(1) 2509(19)

Some insight on the qualities that distinguish these configurations from each other can
be gained by directly looking at typical snapshots taken in these Monte Carlo simulations.
In the illustration of a part of the spins as three-dimensional arrows in Fig. 5.3(a) on p. 94

linear alignment in different directions can be recognized. However, it is very difficult to
get a clear picture of the whole system in this way. In this example 4096 arrows would
have to be shown. A better visualization of the same snapshot is presented in Fig. 5.3(b)
on p. 94.

There the averaged z-component of all spins at sites with the same x- and y-, but
varying z-coordinates is shown color-coded on the xy-plane. In this way one can
see the degree to which the spins are aligned with the z-direction orthogonal to the
plane. Correspondingly, projections onto the y-direction are shown on the xz-plane
and projections onto the x-direction on the yz-plane. Evidently, in this low-temperature
snapshot the spins are predominantly aligned in linear chains. These chains lie in parallel
planes. In these planes the chains are oriented along one of the coplanar lattice axes,
some in positive and some in negative direction. In different planes chains parallel to
either possible axis are formed.

A comparison with the snapshots in Fig. 5.4 on p. 94, where the order parameter D
takes on values corresponding to two of the other peaks in Fig. 5.2(a), then clarifies why
multiple phases characterized by D seem to coexist. While in each case all spins are
aligned linearly in parallel planes, they can have one of two orthogonal directions in the
different planes. In the case of a high value of D one direction is taken more often than
the other one. With lower values of D the ratio is more balanced.

As far as the linear directional ordering of the spins is concerned, the different possible
values of D in the low temperature phase should be considered equivalent. One could
define an alternative order parameter that is immune against this effect in the following
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Figure 5.2: Distributions measured in the three-dimensional compass model with periodic boundary
conditions with L = 16 in the low temperature phase at β = 20. In (b) dark points correspond to high
densities.

way:

D′ =
1
N

√
(Dz − Dy)2 + (Dy − Dx)2 + (Dz − Dx)2 (5.3)

with

Dz =
L

∑
j=1

max
{∣∣∣E(z=j)

y

∣∣∣ ,
∣∣∣E(z=j)

x

∣∣∣
}

,

Dy =
L

∑
j=1

max
{∣∣∣E(y=j)

x

∣∣∣ ,
∣∣∣E(y=j)

z

∣∣∣
}

,

Dx =
L

∑
j=1

max
{∣∣∣E(x=j)

y

∣∣∣ ,
∣∣∣E(x=j)

z

∣∣∣
}

, (5.4)

where E(z=j)
y is the total energy of bonds in y-direction restricted to the lattice plane

defined by z = j and so on. However, as it turns out, this is not necessary with screw-
periodic boundary conditions, where the problems of the order parameter are effectively
avoided and where finite size effects are also weaker. Details are presented in the next
section.

In the larger systems studied here there are also signs of phase coexistence at tempera-
tures close to the transition. For instance the histogram of D in Fig. 5.5 on p. 95, which
has been measured in the L = 28 system at the inverse temperature βmax, where the
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5 Results for the three-dimensional compass model

susceptibility χ is maximized, apparently features a bimodal distribution, which could
be seen as the signature of a first order transition. But again there are also contributions
at larger values of D, which complicate the analysis.

(a) 3 layers of spins taken from the
complete system of 16 layers
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Figure 5.3: Example spin configuration with D = 0.516 of the three-dimensional system with L = 16 and
regular periodic boundary conditions at β = 20. In 7 planes there is alignment parallel to the x-axis, in 9

planes parallel to the z-axis.
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(a) D = 0.554
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Figure 5.4: Averaged spin projections of two example configurations of the three-dimensional system with
L = 16 and regular periodic boundary conditions at β = 20. The same color coding as in Fig. 5.3(b) has
been used. (a) 6 planes aligned parallel to the y-axis, 10 planes parallel to the z-axis. (b) 5 planes aligned
parallel to the y-axis, 11 planes parallel to the z-axis.
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Figure 5.5: Histogram of the order parameter D at βmax(L = 28) in the three-dimensional compass model
with L = 28 and regular periodic boundary conditions

5.2 Results with screw-periodic boundary conditions

In this section I present the results of Monte Carlo simulations of the three-dimensional
compass model with screw-periodic boundary conditions with screw parameter S = 1 on
lattices of linear sizes from L = 8 to L = 48. In all parallel tempering simulations replica
exchanges were proposed after 100 sweeps of canonical updates. Detailed information
on the parameters of the simulations is given in Table 5.3 on p. 96. For L ≤ 28 the inverse
temperatures { βk }K

k=1 used in the measurements have been optimized for constant
energy distribution overlap. For L ≥ 32 the βk have been chosen with the constant
entropy difference scheme employing heat capacity data from smaller lattices. This has
worked rather well in this case as the shape and location of the specific heat peak is
subject to rather low finite-size influences.

As seen with regular periodic boundary conditions before, the estimated D(β) curves
shown in Fig. 5.9 on p. 106 indicate a thermal phase transition from a disordered high-
temperature phase into a directionally ordered phase with D > 0. Here the temperature
location of the transition does not move as much between the different lattice sizes as
with the previously studied boundary conditions. This can also be seen in the locations
of the peaks of the susceptibility χ in Fig. 5.10 on p. 107. For L < 32 there are some
irregularities in the shapes of the susceptibility peaks, which disappear on larger lattices.
The Binder parameter Q2 shows distinct minima in Fig. 5.13 on p. 110. It tends to a
constant value of about 1/3 at high temperatures and to approximately 2/3 at low
temperatures.

The curves of the normalized energy E(β)/N in Fig. 5.11 on p. 108 also show bends
in the same temperature region. The corresponding peaks of the specific heat capac-
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5 Results for the three-dimensional compass model

Table 5.3: Parameters used in parallel tempering simulations of the three-dimensional compass model
with screw-periodic boundary conditions. Listed are the linear lattice sizes L, the corresponding lattice
volumes N = L3, the lowest and highest inverse temperatures β, the total number of replicas and
temperature points K and the number of Monte Carlo sweeps used for thermalization and measurement.
For comparison also the highest autocorrelation times of the energy time series ordered by temperature
(measured close to the transition temperature) are given for each lattice size.

Sweeps for Sweeps for
L N β-range K Thermalization Measurement max τint(E)

8 512 4 — 20 32 106 107 135
12 1728 4 — 20 32 106 107 979
16 4096 4 — 20 64 106 107 554
20 8000 8 — 12.5 64 2× 106 2× 107 898
24 13824 8 — 12.5 64 2× 106 2× 107 1886
28 21952 8 — 12.5 64 2.5× 106 2.5× 107 5144
32 32768 9 — 12.5 64 2.5× 106 2.5× 107 4315
36 46656 9 — 11.5 48 2.5× 106 2.5× 107 7723
40 64000 9.5 — 11.5 64 3× 106 3× 107 8230
44 85184 9.5 — 11.5 64 3.5× 106 3.5× 107 19934
48 110592 9.5 — 11.5 64 3.8× 106 3.8× 107 36971

ity C(β)/N in Fig. 5.12 on p. 109 have more homogeneous shapes than those of the
susceptibility χ.

The maxima of χ and C/N and the minima of Q2 have been determined by multiple
histogram analysis and are listed in Table 5.4.

At low temperatures the distribution P(D) of the order parameter does not show the
peculiarities observed with regular periodic boundary conditions. See Fig. 5.16 on p. 112

for an example comparable to that of the last section. The histogram is strictly unimodal.
An example spin configuration corresponding to the peak value of D can be seen in
Fig. 5.17 on p. 113. Again linear alignment of the spins is clearly visible.

However, resulting from the connection of neighboring lines and planes with the
screw-periodic boundary conditions, now all spins in one plane always point in the
same direction and also spins in different planes are oriented in parallel. This is an effect
of the reduced degeneracy with these boundary conditions because there are are less
reflection symmetries available for the lattice planes than outlined in Sec. 1.3.1. Hence,
there is no problem in using the simple definition of D as an order parameter.

Close to the transition temperature there are signs for phase coexistence realized in a
double peak distribution of D. By applying the multiple histogram analysis the inverse
temperatures βD

eqH(L), where the histogram of D has two peaks of equal height, can be
determined quite precisely. Those histograms are shown in Figs. 5.14(a)–(c) on p. 111.
The double peak structure is already present in the smallest system studied here with
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5.2 Results with screw-periodic boundary conditions

Table 5.4: Locations and values of the extrema of the susceptibility χ, the specific heat capacity C/N and the
Binder parameter Q2 in the three-dimensional compass model with screw-periodic boundary conditions

L β
χ
max χmax βC

max Cmax/N βQ2
min Q2,min

8 9.902(4) 20.10(4) 9.834(5) 1.904(3) 8.97(1) 0.230(2)
12 10.26(1) 51(1) 10.21(1) 2.83(3) 9.72(4) 0.297(4)
16 10.42(1) 75(1) 10.246(3) 2.99(2) 9.76(2) 0.293(3)
20 10.205(2) 111(1) 10.208(1) 3.53(2) 9.98(1) 0.272(3)
24 10.192(1) 190(2) 10.199(1) 4.44(3) 10.059(3) 0.244(3)
28 10.180(1) 310(3) 10.188(1) 5.6(1) 10.104(2) 0.17(1)
32 10.177(1) 457(4) 10.183(1) 6.99(5) 10.123(1) 0.11(1)
36 10.176(1) 662(5) 10.180(1) 8.8(1) 10.139(1) 0.05(1)
40 10.173(1) 916(8) 10.176(1) 10.8(1) 10.147(1) −0.05(1)
44 10.1724(2) 1237(10) 10.1744(3) 13.3(1) 10.1521(4) −0.17(1)
48 10.1728(4) 1688(26) 10.1742(4) 16.7(2) 10.157(1) −0.35(2)

L = 8. But from L = 16 to L = 28 the central relative suppression of the probability
distributions successively goes down. Also up to L = 24 the two peaks move successively
closer together.

Then, starting from L = 32, the behavior changes again. The dip between the two
peaks grows steadily with L and also their separation no longer shrinks. Moreover, from
L = 36 on there are also double peak structures in the energy E. The distributions P(E)
measured at the corresponding inverse temperatures βE

eqH(L) are shown in Fig. 5.15 on
p. 112.

Additionally, in Fig. 5.14(d) on p. 111 the distributions P(D) at inverse temperatures
βeqW(L) are shown for lattice sizes L = 32, . . . , 48. Here the two peaks have equal weight
as proposed by Janke et al. [16]. They have been found by first defining Dcut(L) as the
value of D where at βeqH(L) the distribution has its central minimum and then searching
for the inverse temperature βeqW(L) where

∫ Dcut(L)
0 dDP(D) =

∫ Dmax
Dcut(L) dDP(D) holds.

Again this is easily done by a combination of multiple histogram reweighting with
Brent’s algorithm for minimization.

βD
eqH(L), βE

eqH(L) and βD
eqW(L) are listed in Table 5.5 on p. 98 together with the

suppression of the probability density at the central dip of the respective histograms as
indicated by Pmax/Pmin. Two example configurations of the L = 32 system at βD

eqH(L =

32) = 10.172, which were taken at the peak-values of D corresponding to the ordered
and disordered phases, are shown in Fig. 5.18 on p. 113.

The coexistence of two phases and the minima of the Binder parameter are indicators
for a first-order phase transition. At such a transition the maxima of susceptibility and
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5 Results for the three-dimensional compass model

Table 5.5: Inverse temperatures where the histograms of the order parameter D or the energy E have two
peaks of equal height or, in the case of D, of equal weight, together with the ratio of the estimated
probabilities at the highest peak and at the lowest point in the dip between the peaks

L βD
eqH Pmax/Pmin βD

eqW Pmax/Pmin βE
eqH Pmax/Pmin

8 9.906(4) 1.40(4)
12 10.29(1) 1.7(1)
16 10.39(1) 1.5(1)
20 10.26(1) 1.20(3)
24 10.199(3) 1.14(2)
28 10.176(1) 1.0(2)
32 10.172(1) 1.17(4) 10.172(1) 1.17(4)
36 10.173(1) 1.48(5) 10.173(1) 1.48(5) 10.177(1) 1.0(1)
40 10.1719(5) 1.8(1) 10.1719(5) 1.8(1) 10.175(1) 1.23(2)
44 10.1716(2) 2.1(1) 10.1716(2) 2.1(1) 10.1740(2) 1.47(3)
48 10.1727(4) 3.1(2) 10.1727(4) 3.1(2) 10.1744(4) 1.9(1)

specific heat capacity are expected to scale with the system size N = L3 as

χmax(L) = a1 + b1 · N + · · · ,

Cmax(L)/N = a2 + b2 · N + · · · . (5.5)

Plotted over the system size these maximum values indeed show an approximately
linear growth in Fig. 5.6 if the attention is restricted to the larger lattices. The quality of
attempted linear fits to Eqs. (5.5) without further scaling corrections is summarized in
Table 5.6. The agreement is better for the specific heat capacity than for the susceptibility.
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5.2 Results with screw-periodic boundary conditions

Table 5.6: The maximum values of the susceptibility (O = χ) and specific heat capacity (O = C/N) from
Table 5.4 have been fitted to the linear relation Omax = a + b · N, where N = L3. Listed are the resulting
values of χ2

dof = χ2/n−2 for different ranges of included lattice sizes.

Lmax Lmin n χ2
dof[O = χ] χ2

dof[O = C/N]

48 8 11 77.91 347.75
12 10 79.26 11.61
16 9 42.19 11.44
20 8 5.01 11.93
24 7 3.79 4.18
28 6 4.46 1.60
32 5 2.72 1.56
36 4 3.25 1.16
40 3 3.43 2.09
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Figure 5.6: Maximum values taken from Table 5.4 plotted over the lattice volume N = L3
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Figure 5.7: Finite-size scaling of inverse pseudo-transition temperatures of the three-dimensional compass
model with screw-periodic boundary conditions for L ≥ 16 together with the best fits from Tables 5.6
and 5.7, which allow to extrapolate the infinite-volume transition point β0.

5.2.1 Transition point

With βC
max(L), β

χ
max(L), βQ2

min(L), βD
eqH(L) and βE

eqH(L) there are various possible defini-
tions of a lattice-size dependent inverse pseudo-transition temperature. For a first-order
transition they are expected to have a displacement from the true infinite-volume tran-
sition point β0 that to leading order scales proportionally to the reciprocal system size
1/N:

βC
max(L) = β0 +

c1

N
+ · · · ,

β
χ
max(L) = β0 +

c2

N
+ · · · ,

βQ2
min(L) = β0 +

c3

N
+ · · · ,

βD
eqH(L) = β0 +

c4

N
+ · · · ,

βE
eqH(L) = β0 +

c5

N
+ · · · . (5.6)

The results of linear fits to Eqs. (5.6) are given in Tables 5.7 and 5.8. For a visualization
of the scaling see Fig. 5.7. The fits are better for βC

max(L), β
χ
max(L) and βQ2

min(L) than for
βD

eqH(L) and βE
eqH(L), but they all agree well. The best estimate for the infinite-volume

transition point can be made from the specific heat capacity data from L ≥ 24:

β0 = 10.1700(3), χ2
dof = 1.12. (5.7)
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5.2 Results with screw-periodic boundary conditions

This corresponds to the transition temperature

T0 = 0.098328(3). (5.8)

While it is possible to consider additional terms with higher powers of (1/N) or expo-
nential corrections in the scaling laws (5.6), this also leads to a higher number of free
parameters and in this case does not improve the quality of the fits.

Table 5.7: Results of least-squares fits of the inverse temperatures taken from Table 5.4, where the maxima
of χ and C and the minima of Q2 are located, to estimate the infinite volume transition point β0 by a
relation of the form β(L) = β0 + c/N. Various ranges of lattice sizes have been tried. The best fits are
marked bold.

Lmax Lmin n β
χ,max
0 χ2

dof βC,max
0 χ2

dof βQ2,min
0 χ2

dof

48 8 11 10.176(3) 268.62 10.180(4) 445.25 10.157(4) 148.63
12 10 10.170(2) 51.07 10.173(2) 62.05 10.170(2) 14.69
16 9 10.169(2) 42.43 10.171(1) 6.85 10.171(1) 1.97
20 8 10.1693(5) 3.52 10.171(1) 7.15 10.171(1) 1.57
24 7 10.169(1) 4.18 10.1700(3) 1.12 10.170(1) 1.57
28 6 10.1702(5) 1.60 10.1699(5) 1.38 10.170(1) 1.59
32 5 10.170(1) 2.10 10.170(1) 1.64 10.170(1) 1.79
36 4 10.170(1) 3.11 10.169(1) 2.34 10.170(1) 2.02
40 3 10.172(2) 2.66 10.171(2) 2.16 10.171(2) 1.80

Table 5.8: Results of least-squares fits of the inverse temperatures taken from Table 5.5, where equal peak
height and equal peak weight histograms are located, to estimate the infinite volume transition point β0
by a relation of the form β(L) = β0 + c/N. Various ranges of lattice sizes have been tried. The best fits
are marked bold.

Lmax Lmin n β
eqH,D
0 χ2

dof β
eqH,E
0 χ2

dof

48 8 11 10.174(3) 259.64
12 10 10.168(2) 86.60
16 9 10.165(3) 78.28
20 8 10.169(2) 22.40
24 7 10.170(1) 12.28
28 6 10.171(1) 2.85
32 5 10.172(1) 2.64
36 4 10.172(1) 3.95 10.172(1) 2.84
40 3 10.173(2) 4.51 10.173(2) 3.22
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Figure 5.8: Reduced interface tensions calculated from P(D) histograms at βD
eqH(L) and βD

eqW(L) and from

P(E) histograms at βE
eqH(L) plotted over 1/L2

5.2.2 Interface tension

If a system exhibiting a first-order phase transition is considered on finite periodic lattices
of size L3, the suppression of the minimum between the two peaks of the probability
distribution of the energy or the order parameter is expected to grow exponentially with
L2:

Pmax/Pmin ∝ e2βσL2
. (5.9)

Configurations corresponding to Pmin are in a mixture of the ordered and the disordered
phases with two interfaces that contribute an excess free energy of 2σL2. The free energy
density σ is called interface tension. It is a common practice to extract the reduced
interface tension σ̂ = βσ from

σ̂(L) =
1

2L2 ln
[

Pmax(L)
Pmin(L)

]
, (5.10)

where Pmax(L)/Pmin(L) is determined from the double-peaked distributions, and then
to determine the infinite volume limit σ̂0 of σ̂(L).

For the three-dimensional compass model I have calculated σ̂(L) at βD
eqH(L) and

βD
eqW(L) for P(D) and at βE

eqH(L) for P(E). The results are listed in Table 5.9 and are
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5.2 Results with screw-periodic boundary conditions

plotted over 1/L2 in Fig. 5.8 for L ≥ 28. For these lattice sizes the reduced interface
tension grows with L. If it vanished in the limit of large systems, this would be an
argument against the first-order nature of the transition. The results of the attempts to
calculate σ̂0 by fitting to the relation

σ̂(L) = σ̂0 +
c

L2 (5.11)

are summarized in Table 5.10 on p. 104. The fits are not of high accuracy, but yield an
estimate of approximately

σ̂0 ≈ 3 · 10−4 (5.12)

However, the asymptotic regime, where Eq. (5.11) is valid, may not yet have been reached.
In general it is also not clear if the same interface tension would be obtained for both
observables D and E.

The usage of the histograms of equal peak weight was mainly motivated by the
desire to reduce the effect of unconsidered scaling corrections, but in this case they
do not increase the quality of the fits. Similarly, carrying out this analysis directly at
the estimated true inverse transition temperature β0 = 10.17 for every lattice size does
not yield better results. Except for the largest lattices the histograms are still highly
asymmetric there.

Table 5.9: Reduced interface tensions calculated from the data in Table 5.5 for P(D) histograms at βD
eqH(L)

and βD
eqW(L) and for P(E) histograms at βE

eqH(L)

L σ̂eqH,D(L) σ̂eqW,D(L) σ̂eqH,E(L)

8 0.0026(2)
12 0.0018(2)
16 0.0008(1)
20 0.00023(3)
24 0.00011(2)
28 0.0000(1)
32 0.00008(2) 0.00008(2)
36 0.00015(1) 0.00016(1) 0.00000(4)
40 0.00018(1) 0.00021(1) 0.00006(1)
44 0.00020(1) 0.00020(1) 0.00010(1)
48 0.00025(2) 0.00027(1) 0.00014(1)
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Table 5.10: Results of least-squares fits of the data from Table 5.9 to estimate the infinite volume limit of
the interface tension σ̂o by the relation σ̂(L) = σ̂0 + c/L2 from different ranges of included lattice sizes
between Lmin and Lmax. The quantity χ2

dof = χ2/n−2 is given in each case to help with the estimation of
the validity of the fit.

Lmax Lmin n σ̂
eqH,D
0 χ2

dof σ̂
eqW,D
0 χ2

dof σ̂
eqH,E
0 χ2

dof

48 28 6 3.1(3) · 10−4 6.32
32 5 3.2(4) · 10−4 7.05 3.4(5) · 10−4 10.52
36 4 4(1) · 10−4 6.16 4(1) · 10−4 9.55 2.8(3) · 10−4 4.18
40 3 5(1) · 10−4 6.48 5(2) · 10−4 16.27 2.9(4) · 10−4 6.28

44 28 5 2.9(2) · 10−4 2.19
32 4 3.0(2) · 10−4 1.86 3.2(2) · 10−4 2.09
36 3 3.4(2) · 10−4 0.70 3.7(1) · 10−4 0.29 2.5(1) · 10−4 0.61

5.2.3 Evaluation of the algorithms

The simulation of the L = 48 system, the largest considered here, ran for 10 days on the
parallel computing cluster, where each replica was assigned to a separate node. Despite
the high computational effort, which amounts to a total of more than 15000 CPU hours,
one finds that only about 500 independent configurations have been sampled at the
temperature with the strongest temporal correlations if one considers the integrated
autocorrelation time of the energy time series sorted by temperature (see Table 5.3 on
p. 96). Of course the situation is better at the other temperatures and the combination of
statistics by multiple histogram analysis further improves matters. Moreover, compared
with simple canonical simulations using only the Metropolis algorithm the cluster update
and parallel tempering already reduce correlations considerably. But different choices of
algorithms might lead to further improvements.

Parallel tempering usually is not the best choice for the analysis of first-order phase
transitions. When high autocorrelation times at the transition temperature are mainly
caused by the exponentially growing long times the system needs to flip between the
two coexisting phases, parallel tempering is only of limited help. It accelerates the
simulation in both phases, but does not assist much with the crossover between them.
Since the different phases at the temperature of coexistence correspond to different peaks
in the energy distribution, in this case at least for the large systems, replica exchanges
between the phases are rarely accepted because of little overlap. This is manifested in
the bottleneck of replica diffusion discussed in Sec. 3.5.2.

It might be worthwhile to check whether multicanonical sampling [76, 77] can be a
viable alternative for the relatively weak first-order transition in the three-dimensional
compass model. With the multicanonical approach, one first determines adapted weight-
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5.2 Results with screw-periodic boundary conditions

ing factors for the probability density in an initial recursion. Ideally, those then allow to
sample all regions of phase space with the same probability, which would speed up the
traversal of the mixed-phase region in the large lattices. On the other hand, the recursion
can be very time consuming and the inclusion of the cluster update would be nontrivial.
Another related method of interest, which provides many of the advantages of multi-
canonical sampling to parallel tempering simulations without requiring the costly initial
adaption of weighting factors, could be the algorithm using multiple Gaussian modified
ensembles presented in Ref. [78].
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Figure 5.9: Estimates of the order parameter D for various lattice sizes and inverse temperatures β obtained
in simulations of the three-dimensional compass model with screw-periodic boundary conditions. Top
row: Linear sizes L = 8, . . . , 20. Middle row: Linear sizes L = 24, . . . , 32. Bottom row: Linear sizes
L = 36, . . . , 48. Markers with error bars are estimates from single-temperature time series. Continuous
lines are from the multiple histogram analysis with faint surrounding lines indicating the 1σ-margin of
statistical uncertainty.

106



5.2 Results with screw-periodic boundary conditions

4 6 8 10 12 14 16 18 20
β

10−1

100

101

102

103

χ

L = 8
L = 12
L = 16
L = 20

7 8 9 10 11 12 13
β

100

101

102

103

χ

L = 24
L = 28
L = 32

9.5 10.0 10.5 11.0 11.5
β

100

101

102

103

104

χ

L = 36
L = 40
L = 44
L = 48

Figure 5.10: Estimates of the order parameter susceptibility χ for various lattice sizes and inverse tempera-
tures β obtained in simulations of the three-dimensional compass model with screw-periodic boundary
conditions. Top row: Linear sizes L = 8, . . . , 20. Middle row: Linear sizes L = 24, . . . , 32. Bottom row:
Linear sizes L = 36, . . . , 48. Markers with error bars are estimates from single-temperature time series.
Continuous lines are from the multiple histogram analysis with faint surrounding lines indicating the
1σ-margin of statistical uncertainty.
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Figure 5.11: Estimates of the energy per site E/N for various lattice sizes and inverse temperatures
β obtained in simulations of the three-dimensional compass model with screw-periodic boundary
conditions. Top row: Linear sizes L = 8, . . . , 20. Middle row: Linear sizes L = 24, . . . , 32. Bottom row:
Linear sizes L = 36, . . . , 48. Markers with error bars are estimates from single-temperature time series.
Continuous lines are from the multiple histogram analysis with faint surrounding lines indicating the
1σ-margin of statistical uncertainty.
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Figure 5.12: Estimates of the specific heat capacity C/N for various lattice sizes and inverse temperatures
β obtained in simulations of the three-dimensional compass model with screw-periodic boundary
conditions. Top row: Linear sizes L = 8, . . . , 20. Middle row: Linear sizes L = 24, . . . , 32. Bottom row:
Linear sizes L = 36, . . . , 48. Markers with error bars are estimates from single-temperature time series.
Continuous lines are from the multiple histogram analysis with faint surrounding lines indicating the
1σ-margin of statistical uncertainty.
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Figure 5.13: Estimates of the Binder parameter Q2 for the order parameter D for various lattice sizes
and inverse temperatures β obtained in simulations of the three-dimensional compass model with
screw-periodic boundary conditions. Top row: Linear sizes L = 8, . . . , 20. Middle row: Linear sizes
L = 24, . . . , 32. Bottom row: Linear sizes L = 36, . . . , 48. Markers with error bars are estimates from
single-temperature time series. Continuous lines are from the multiple histogram analysis with faint
surrounding lines indicating the 1σ-margin of statistical uncertainty.
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Figure 5.14: Histograms of the order parameter D in the three-dimensional compass model with screw-
periodic boundary conditions for various lattice sizes. Different factors of normalization have been used
on different lattice sizes. (a)-(c): Equal peak height. (d): Equal peak weight
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screw-periodic boundary conditions for various lattice sizes. For L = 32 and smaller lattices no double-
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Figure 5.16: Distributions measured in the three-dimensional compass model with screw-periodic boundary
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Figure 5.17: Averaged spin projections of an example configuration with D = 1.028 of the three-dimensional
system with L = 16 and screw-periodic boundary conditions at β = 20.
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Figure 5.18: Averaged spin projections of two example configurations of the three-dimensional compass
model with screw-periodic boundary and conditions and L = 32 at β = 10.172 close to the phase
transition. (a) is taken from the disordered phase, (b) from the ordered phase. The same color coding as
in Fig. 5.17 has been used.
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6 Conclusion

My findings for the two-dimensional classical compass model are in good agreement
with the well-accepted results that have been published earlier. There is a temperature-
driven continuous phase transition between a disordered high-temperature phase and a
phase characterized by long-range directional ordering at low temperatures. The critical
temperature in the thermodynamic limit has been estimated as

Tc = 0.14617± 0.00006

in units with kB = 1 and |J| = 1. The critical exponents of the spatial correlation length
and the order parameter susceptibility have been found to be

ν = 1.00± 0.01 and

γ = 1.71± 0.02.

The transition may belong to the two-dimensional Ising universality class.
The main result of this thesis is that there is also a directional ordering transition in

the three-dimensional classical compass model, which is first-order. I have extrapolated
a value of

T0 = 0.098328± 0.000003

for the infinite volume transition temperature.
In contrast to conventional magnetic-like ordering the essentially one-dimensional

directional ordering of the compass model is less stable in higher dimensions. This is
reflected by a lower value of the transition temperature in three than in two dimensions.
Generally the directional ordering is broken up faster by thermal fluctuations. The Ising
model for instance has significantly higher critical temperatures of Tc ≈ 2.27 in two
dimensions and Tc ≈ 4.51 in three dimensions.

In both the two- and the three-dimensional compass model finite-size effects are severe.
Only with the help of unusual screw-periodic boundary conditions reliable results could
be obtained. Still it has been necessary to go to L > 32 (corresponding to N > 32768
spins) to see clear first-order scaling behavior in the three-dimensional model. This may
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6 Conclusion

be explained by a length scale set by a spatial correlation length, for which, however, a
suitable observable would have to be found.

As a byproduct of this thesis the multiple histogram reweighting method has been
studied quite intensively. While the technique has been well-known for more than twenty
years, there has been an upsurge of popularity more recently, which can be explained by
the frequent application of parallel tempering in many fields. Nevertheless, it is still not
fully clear how to best deal with correlated data in the estimation of the density of states.
Unfortunately the best conclusion I can give in this regard is that it seems to hardly
matter how one accounts for autocorrelation times.

When work on this thesis had already been well advanced, an independent study
by Wenzel and Läuchli was published [79], which also mentions a first-order transition
in the three-dimensional compass model. The authors quote a value of T0 ≈ 0.098
for the transition temperature, which matches the estimate given above. The absence
of a signature of a phase transition in the three-dimensional quantum model in the
work by Oitmaa and Hamer [11] may be explained by a limitation of their methods,
which can only detect well continuous transitions, or by an intrinsic difference of the
classical and the quantum model in this case. It would be an intriguing future project
to pursue further investigations of the quantum compass model in three dimensions.
Monte Carlo methods may be of help to shed light on this open question and to gain
better understanding of orbital-only models. It may furthermore be interesting to see
how an asymmetric version of the three dimensional compass model reacts to a change
of the ratio of the directional coupling constants or which influence the addition of an
external field can have.
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Appendix A

Check for correctness of the
three-dimensional Metropolis update

A model with the same constituents si ∈ S2 as the three-dimensional compass model is
the classical Heisenberg model. In the case of a one-dimensional chain of N spins with
free boundary conditions it can be solved exactly1. This suggests the adaption of the
Metropolis algorithm from Sec. 3.3.2 to this model to verify the correctness of its results
with the analytic solution.

The Hamiltonian of the one-dimensional Heisenberg chain with free boundary condi-
tions is given by

H = −J
N−1

∑
i=1

si · si+1 = −J
N−1

∑
i=1

cos(si, si+1) = −J
N−1

∑
i=1

cos(θi). (A.1)

The energy only depends on the N− 1 angles θi between neighboring spins. Conveniently,
the partition function factorizes with this choice of boundary conditions:

ZN−1 =
∫

ds1 · · ·
∫

dsNe
J

kBT

N−1
∑

i=1
sisi+1

=
∫

dΩ1 · · ·
∫

dΩNe
J

kBT

N−1
∑

i=1
cos(θi)

=

[∫
dΩ1e

J
kBT cos(θ1)

]N−1

= ZN−1
1 . (A.2)

The remaining integral can be solved directly:

Z1 =
∫

dΩe
J

kBT cos(θ)
= 2π

1∫

−1

d(cos θ)e
J

kBT cos(θ)
=

4πkBT
J

sinh
(

J
kBT

)
. (A.3)

Making use of thermodynamic relations, the free energy, entropy, internal energy and
heat capacity of the two-spin system, which has only one degree of freedom, follow from

1An early discussion of the model is given by Fisher [80].
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Eq. (A.3):

F1 = −kBT lnZ1 = −kBT ln
[

4πkBT
J

sinh
(

J
kBT

)]
(A.4)

S1 = −∂F1

∂T
= kB lnZ1 +

kBT
Z1

∂Z1

∂T

= kB

[
1 +

J
kBT

coth
(

J
kBT

)
+ ln

[
4πkBT

J
sinh

(
J

kBT

)]]
(A.5)

E1 = F1 + TS1 = kBT − J coth
(

J
kBT

)
(A.6)

C1 =
∂E1

∂T
= kB −

J2

kBT2 sinh−2
(

J
kBT

)
(A.7)

Since ZN−1 = ZN−1
1 , one has F1 = FN−1/N−1 and consequently E1 = EN−1/N−1 and

C1 = CN−1/N−1. There are no finite-size effects.
I have implemented a Monte Carlo simulation of the classical Heisenberg model using

the update from Algorithm 3.2 on p. 38, but with random selection of the site i and the
energy difference term adapted to the new model:

∆E = −J
[
(si−1 · s′i + s′i · si+1)− (si−1 · si + si · si+1)

]

= −J
[
(si−1 + si+1) · (s′i − si).

]
(A.8)

The N = 200 system has been simulated in the canonical ensemble at different tem-
peratures ranging from Tmin = 0.01 to Tmax = 2 for 107 sweeps each following a
thermalization phase of 105 sweeps. I have attempted to set an acceptance ratio of
50% using the method presented in Sec. 3.3.3, but this was not possible for the higher
temperature regions, which lead to acceptance ratios of up to 68%. The measurements
of the energy and heat capacity shown in Fig. A.1 match the theory well with small
deviations distributed uniformly around the expected values.
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Figure A.1: Monte Carlo results of energy and heat capacity for the N = 200 classical Heisenberg spin chain
compared with the analytic solution. The insets show the relative deviations from the exact results with
statistical uncertainties estimated by the jackknife method.
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Appendix B

Numerical comparisons for the multiple
histogram method

In Sec. 3.6.1.3 an analysis of energy histogram uncertainties with bin-dependent autocor-
relations taken into account for the multiple histogram reweighting method has been
presented. Since such a procedure has not yet found widespread use, an examination of
the nature of these uncertainties shall be given in the following. Moreover the results of
this analysis with

(a) statistical inefficiencies distinguished by energy bin and temperature: δ2Hik =

gik〈Hik〉,

(b) only temperature-dependent inefficiency factors: δ2Hik = gk〈Hik〉, or

(c) no consideration of varied inefficiencies at all: δ2Hik = 〈Hik〉

will be compared.
As a reference system the two-dimensional Ising model [33, 34] without external

magnetic field, defined by the Hamiltonian

H = −J ∑
〈i,j〉

σiσj, with σi = ±1, (B.1)

is a good choice. It has not only been solved analytically on infinite lattices by On-
sager [81], but also on finite square lattices by Kaufman [82]. Beale used the latter
solution for an algorithm to compute the exact partition function [83]. An implementa-
tion in Mathematica is readily available [84], by the means of which the density of states
for lattices up to a size of 128× 128 can be obtained, see Fig. B.1(a). From the density of
states exact expectation values of thermodynamic quantities such as the specific heat
capacity are easily calculated at any temperature. To reduce notational overhead, in the
following units with kB = 1 and J = 1 will be assumed.

On the infinite lattice the two-dimensional Ising model has a continuous phase
transition at the critical point βc = 1/Tc = 1/2 · ln(1 +

√
2) ≈ 0.44. There the specific heat
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Figure B.1: Density of states and specific heat capacity for the 2D Ising model on a N = 128× 128 square
lattice, computed from the Beale solution

diverges. Due to finite-size effects of the N = 1282 system the discontinuity is rounded
into the peak seen in Fig. B.1(b). Close to this second-order phase transition Monte Carlo
simulations suffer from critical slowing down: Autocorrelation times are much longer
than at higher or lower temperatures and the statistically effective number of samples is
reduced.

B.1 Different estimates for histogram uncertainties

I have carried out canonical Monte Carlo simulations at different temperatures below,
close to and above the critical point. The measured data has then been processed by
the multiple histogram reweighting routines to estimate the energy density of states. In
the simulations a simple Metropolis update with local spin flips has been used. While
this is not an ideal choice for high accuracy near the transition temperature, where a
cluster update as devised by Swendsen and Wang [37] or Wolff [38] would be vastly
superior, it assures that the autocorrelation times of the energy trajectories measured
in the different simulations cover a wide range because critical slowing down is not
attenuated at all. Arguably, this should highlight eventual differences between the results
of the various weighting schemes under examination, which can be discerned by the
way autocorrelation times are handled. The results of this analysis for systems of sizes
N = 322 and N = 1282 are discussed in the following.

In the Ising model all accessible energy levels are discrete. On the square lattice
they can be enumerated by Ei = { −2N,−2N + 8,−2N + 12, . . . , 2N − 12, 2N − 8, 2N }.
They are generally spaced ∆E = 4 apart, but the energies −2N + 4 and 2N − 4 are not
possible. Because of this no additional binning is necessary and there is no concern of
discretization error.
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Figure B.2: Energy histograms measured in 25 canonical Monte Carlo simulations of the N = 322
2D Ising

model at different inverse temperatures ranging from 0.03 to 1.00. Counts are displayed on a logarithmic
scale. Color is only used to ease the visual discrimination of overlapping histograms.

B.1.1 Results for N = 322

The Ising model on the N = 322 square lattice has been simulated at 25 different inverse
temperatures βk = 0.03, . . . , 1.00 for 2 · 107 Monte Carlo sweeps each. The temperatures
have been chosen such that energy histograms at neighboring temperatures have an
overlap of 45%± 5%. The measured histograms are shown in Fig. B.2.

The range of temperatures is wide enough to have sampled the ferromagnetic phase
below the critical temperature Tc starting from the ground state E0 = −2N as well as
the paramagnetic phase above Tc up to energies slightly above zero. For J > 0 the
expectation value of the energy 〈E〉 is negative at all temperatures.

Using the collected simulation data, the density of states has been estimated over the
sampled range of energies using the multiple histogram analysis method with three
different levels of sophistication in the consideration of autocorrelation effects. The same
data has been used repeatedly to compare the results of the analysis with the three
schemes. Statistical errors were estimated by performing the whole analysis separately
on 100 jackknife blocks and calculating the corrected variance of the block results.

The density of states Ω(E) is only defined up to a factor of proportionality. But since
in the Ising model there are exactly two configurations that realize the ground state
energy E0, σi ≡ +1 or σi ≡ −1 for all spins σi, one usually sets Ω(E0) = 2. Because the
ground state has been reached in the simulations, the estimated densities of states can
be scaled appropriately.
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Figure B.3: Shown are exact solutions and estimations from the multiple histogram analysis for the N = 322

Ising model. The error bars of the heat capacity estimates are too small to be visible.
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Figure B.4: Relative deviation of the logarithm of the estimated density of states from the exact solution for
the N = 322 Ising model. Faint lines indicate the statistical uncertainty within 1σ.

Regardless of the way autocorrelation times were considered, the estimated density
of state matches the exact solution very well. Perceivable deviations only occur at
the highest energies, which were hardly visited in the simulations. Additionally the
specific heat capacity was calculated at various temperatures different from the original
simulation temperatures. It matches the exact solution with high precision in each case.
The results are shown in Fig. B.3.

The high resolution of the agreement with the exact solution can be seen in Fig. B.4,
where the relative deviation of the estimated logarithm of the density of states ln Ω̂(E)
from the exact value ln Ω(E) is plotted over the energy. Within statistical error all
estimates match and a clear best candidate cannot be made out.
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B.1.2 Results for N = 1282

I have repeated the same procedure as in Sec. B.1.1 on the N = 1282 square lattice with
40 different inverse temperatures βk = 0.36, . . . , 0.83. Each simulation has been run
for 107 Monte Carlo sweeps. Energy histograms at neighboring temperatures have an
average overlap of 35%, see Fig. B.5.

While the range of temperatures is now no longer wide enough to have sampled
the ground state, the ferromagnetic and paramagnetic phases are still both included
within the energy range. For this reason the estimated densities of states have not been
normalized by the value at the lowest energy, but by that at the median energy sampled
in the simulations, which could still be related to the exact result from Beale’s solution.

Again the multiple histogram estimates match the analytical results for the density
of states and the heat capacity very well as one can see in Fig. B.6 on p. 126. Also a
close look at the relative deviations of the estimated logarithm of the density of states
ln Ω̂(E) from the exact value ln Ω(E) as shown in Fig. B.7 on p. 126 reveals only slight
variations of the quality of the results. Somewhat surprisingly, the conceptually most
sophisticated approach of taking autocorrelations into account (gik = gik(βk, Ei)) moves
further from the zero-line than the other two estimates over a wide range of energies.
Most likely, these deviations can be attributed to an insufficient accuracy in the numerical
estimation of the integrated autocorrelation times for the bin-characteristic functions
at low temperatures. Nevertheless, all three estimates match within the statistical
uncertainty and these relative differences become visible only on a small scale.
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Figure B.5: Energy histograms measured in 40 canonical Monte Carlo simulations of the N = 1282
2D Ising

model at different inverse temperatures ranging from 0.36 to 0.83. Counts are displayed on a logarithmic
scale. Color is only used to ease the visual discrimination of overlapping histograms.

125



Appendix B Numerical comparisons for the multiple histogram method

−2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8
E/V

0
1
2
3
4
5
6
7
8
9

ln
Ω

(E
)

×103

gik = gik(βk , Ei)

gik = gk(βk)

gik = 1

exact

(a) Logarithm of the density of states

0.3 0.4 0.5 0.6 0.7 0.8 0.9
β

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
V

(β
)/

N

exact
gik = gik

gik = gk

gik = 1

(b) Specific heat capacity

Figure B.6: Shown are exact solutions and estimations from the multiple histogram analysis for the N = 1282

Ising model. On the left hand plot deviations from the analytically computed curve are smaller than the
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B.1.3 Statistical uncertainties of histogram entries

The evaluation of the statistical uncertainties of the individual histogram entries has been
done according to Eq. (3.87): They can be calculated directly from the expectation values
of the histogram occupations 〈Hik〉 and the statistical inefficiency factors gik = 1+ 2τint,ik.
To estimate the latter, the integrated autocorrelation times of the bin characteristic
functions ψikm defined in Eq. (3.74) have been computed by direct summation of their
autocorrelation functions. Since each function ψikm only has values of 0 and 1, one might
think that the behavior of its autocorrelation function could be more problematic than for
instance that of the energy E itself, which usually has a much wider range. Fortunately,
this can be checked. The squared statistical uncertainties δ2Hik can also be estimated by
jackknife resampling the whole time series, building the histograms separately for each
block and calculating their corrected variance δ2ĤJK

ik . Then by Eq. (3.87) an estimate for
gik is:

ĝJK
ik =

δ2ĤJK
ik

Hik (1− Hik/Mk)
, (B.2)

for which only the data of a time series of length Mk from a single simulation is used.
In Fig. B.8 on p. 130 two energy histograms are shown that have been measured in

the simulations of Sec. B.1.1 at inverse temperatures slightly below and slightly above
the pseudo-critical point of the N = 322 Ising model, which is shifted downwards from
βc ≈ 0.44 due to finite size effects. In the figure they are accompanied by plots of the
statistical inefficiencies gik of each histogram bin from two estimates: ĝik by summation of
the autocorrelation function and ĝJK

ik by Eq. (B.2) using 100 jackknife blocks. Considering
that especially the latter estimate is rather noisy, the two curves match quite well, which
supports the applicability of the integrated autocorrelation times of the bin characteristic
functions to determine the weights used in the multiple histogram analysis.

The plots of the statistical inefficiencies in Fig. B.8 on p. 130 show that both the
samples of the most probable energies in the peaks of the histograms and those of
the least probable energies in the tails are almost uncorrelated, while those of the
intermediate energies are more correlated. This leads to a characteristic double peak
structure with a central dip. The same can also been observed at temperatures further
away from the phase transition point, although the structure is less pronounced since
autocorrelation times are generally shorter. See Fig. B.12 on p. 132 for a demonstration
with the data for the N = 1282 Ising model from Sec B.1.2. I have also observed this
double peak structure in the uncertainties of the energy histograms of the compass
model. It can also be seen in a simple model of bivariate Gaussian random variables [32].
Apparently this is a non-model-specific phenomenon.
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A qualitative understanding may be found in the observation that if the system is first
in a highly probable state at the peak of the energy histogram, it will likely remain there
or, since it can only leave the peak for less probable states (be it with higher or lower
energy), return to it after a short time. Accordingly, the autocorrelation function

Cik(t) =
〈ψikmψik,m+t〉 − 〈ψikm〉2
〈ψikm

2〉 − 〈ψikm〉2
(B.3)

will show a sharp decay for these energy bins i.
The situation is less symmetric for configurations that have energies in the sloped

sides of the histogram. The system can assume a less probable state, from which it
should return rather quickly, but it is more probable for it to move in the direction of
higher probability, from which it will return after a longer wait. In addition to the sharp
decay, the autocorrelation function Cik(t) will also be positive for longer gap times t.
This leads to larger integrated autocorrelation times.

Finally, the energy levels in the flat tails are very improbable and will only be revisited
very rarely and are hence almost uncorrelated.

For illustrative purposes some example histogram bin autocorrelation functions, that
were evaluated in the course of the estimation of ĝik, are shown in Fig. B.9 on p. 130.

The histograms shown in Fig. B.8 are skewed and not Gaussian because they were
measured in the vicinity of the pseudo-critical temperature, where spin-spin correlations
become important and p(E = −J ∑〈i,j〉 σiσj) is no longer determined by the central limit
theorem. Consequently, also the distribution of the ĝik is not symmetric. The ĝik-peak
lies on the “broader” side of the histogram because for intermediate energies the range
of higher-probability energies is more extensive there.

If bin statistical inefficiencies are used to calculate weights for the multiple histogram
analysis, their central suppression implies that the majority of sampled configurations,
which have energies in the histogram peak region, are counted almost fully. Autocor-
relation times have less influence than if only one inefficiency factor gk is used for all
histogram entries measured at an inverse temperature βk.

However, if histograms from low temperature simulations are considered, the situa-
tion is different. Their main constituent is the ground state energy and the statistical
inefficiency of that histogram entry is highest too, see Fig. B.10 on p. 131 for an example.
This can be understood from the high asymmetry of the distribution which is cut off at
its peak.

To qualitatively compare the effect of statistical inefficiencies gik(βk, Ei) estimated per
bin with inefficiencies estimated for the whole energy time series gk(βk) = 1+ 2τint,E(βk),
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one can introduce averaged statistical inefficiencies

gk = gk(βk) =
∑i gik Hik

∑i Hik
=

∑i gik Hik

Nk
, (B.4)

where the individual bin inefficiencies are weighted by the occupation of each bin. gk(βk)

and gk(βk) are compared in Fig. B.11 on p. 131 for the N = 322 and N = 1282 Ising
model. If gik or gk are used in the multiple histogram analysis, in both cases significantly
less weight is given to the samples from the simulations close to the critical point.
However, the ratio between the highest and lowest inefficiency-factors is larger when
autocorrelation times are considered per temperature only. Moreover in the N = 322

case, where the ground state is reached in the low temperatures, the averaged statistical
inefficiencies are also high there.

It should be noted that only the ratio of the statistical inefficiencies is significant
and that their absolute values do not play a role in the multiple histogram analysis.
Furthermore their ratio is only important for energy bins where histogram overlap is
large.
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Figure B.8: Top row: Energy histograms of the N = 322 Ising model measured at two different temperatures,
error bars from the jackknife analysis. Bottom row: Corresponding statistical inefficiencies for each
histogram bin
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Figure B.9: Numerically evaluated autocorrelation functions that went into the evaluation of ĝmk in Fig. B.8(a)
(N = 322, β ≈ 0.4237), for selected energy bins
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for each histogram bin.
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Figure B.11: Comparison of different measures for statistical inefficiencies in the 2D Ising model. Top row:
N = 322. Bottom row: N = 1282.
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ĝik

(a) β ≈ 0.3571

−1.24 −1.20 −1.16 −1.12 −1.08 −1.04 −1.00
E/N

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14
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Figure B.12: Top rows: Energy histograms of the N = 1282 Ising model measured at different temperatures.
Bottom rows: Corresponding statistical inefficiencies for each histogram bin. Note the differing scales.

132



B.2 Non-iterative and iterative estimation of the density of states

B.2 Non-iterative and iterative estimation of the density of
states

Fenwick’s estimator for the density of states described in Sec. 3.6.2 does not require the
iterative solution of a set of equations. To see whether it represents a viable alternative
to the traditional approach outlined in Sec. 3.6.1, I have applied it also to the simulation
data used in Sec. B.1. Since in my implementation the non-iterative method does not
distinguish varying statistical inefficiencies, I have compared it only to the iterative
estimator with all inefficiency factors set to unit: gik ≡ 1.

Here only plots of the relative deviation of the logarithm of the estimated density
of states ln Ω̂(Ei) from the exact solution ln Ω(Ei) are shown, which highlight the
differences of the results of the two schemes of analysis. Since the estimate for the
density of states at the lowest energy computed by the non-iterative method is of rather
low quality, the estimated densities of states for both N = 322 and N = 1282 have been
normalized by the central entry.

The results for N = 322 shown in Fig. B.13(a) on p. 134 are of comparable quality
for both methods. For N = 1282, however, the results obtained with the non-iterative
method have a much higher statistical uncertainty over a wide range of energies, see
Fig. B.13(b). Apparently the non-iterative approach is more vulnerable to lower quality
statistics at the lower energies. These deficiencies are propagated to the higher energies
by construction of the estimate Ω̂i. In contrast to this, the iterative method only takes
into account data from the single energy bin Ei to estimate Ω̂i.
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Figure B.13: Shown is the relative deviation of the logarithm of the estimated density of states from the
exact solution for the Ising model with N = 322 and N = 1282 for both the iterative and the non-iterative
method. Faint lines indicate the statistical uncertainty within 1σ.
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B.3 Parallel tempering

To get an impression of the applicability of the multiple histogram reweighting method
for data generated in parallel tempering simulations, I have also simulated the Ising
model on the N = 162 and N = 322 square lattices with replica exchange updates in
addition to canonical Metropolis updates. 25 replicas have been simulated for 2 · 107

Monte Carlo sweeps each and exchanges between next neighbor temperatures have been
proposed every 10 sweeps. A narrower range of inverse temperatures than in Sec. B.1.1
has been chosen to facilitate exchanges of temperatures, with βl taking values between
0.3 and 0.5. The same range has been used for both lattice sizes.

Histograms of the energies measured in the simulations after they have been sorted by
temperatures are shown in Fig. B.14 on p. 136; the broadening of the distributions close
to the critical point is clearly visible. In contrast to this the energy histograms shown in
Fig. B.15 on p. 136, which are taken directly from the replica time series without prior
sorting by temperatures, are narrower. Apparently the replicas have not had the chance
to significantly change their system configurations before the temperature exchanges. If
each replica had explored large portions of configuration space as it would happen in a
true random walk through the temperatures, the replica histograms would actually span
wider ranges of energies than the temperature-sorted histograms.

The multiple histogram reweighting method has been applied on the measured data
in different ways:

(i) with time series of energy measurements pre-ordered by temperature, which have
then been treated as if obtained from independent canonical simulations with the
method of Sec. 3.6.1 with autocorrelation times estimated for each energy bin,

(ii) with pre-ordered time series, but ignoring statistical inefficiencies, and

(ii) by applying the method outlined in Sec. 3.6.3 directly on the replica time series,
again with autocorrelation times estimated for each energy bin.

Fig. B.16 on p. 137 shows the relative deviation of the estimated logarithm of the density
of states ln Ω̂(Ei) from the exact result ln Ω(Ei) for cases (i) to (iii) and the two lattice
sizes. ln Ω(Ei) has always been normalized at the central energy bin. In this example the
results of approach (iii), that was specially designed to respect the correlations in parallel
tempering time series, deviate from the exact result more strongly than the results of
approach (i). But also there the results are worse than those obtained with the most
naive approach (ii). Apparently neither approach (i) nor (iii) have correctly captured the
optimal statistical weighting of the histograms.

A general decision on the preferable method cannot be made directly from these
findings. It would be necessary to carry out a comparative examination with simulations
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set up in such a way that the single replicas explore broader portions of configuration
space.
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Figure B.14: Energy histograms of the 2D Ising model from parallel tempering simulations. The data from
all replicas has been collected and sorted by temperatures
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Figure B.15: Energy histograms of individual replicas of parallel tempering simulations of the 2D Ising
model, not sorted by temperatures
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Figure B.16: Shown is the relative deviation of the logarithm of the estimated density of states from the
exact solution for the Ising model on the N = 162 and N = 322 square lattices with data obtained in
parallel tempering simulations. Faint lines indicate the statistical uncertainty within 1σ.
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