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Abstract

In this paper we present an approach to planning with
prioritized goal states. To describe the preference ordering
on goal states, we make use of ranked knowledge bases
which induce a partial preference ordering on plans. We
show how an optimal plan can be computed by assigning
an integer value to each state in an appropriate manner. We
also show how plan optimality can be tested in a similar
fashion. Our implementation is based onMetric-FF, one
of the fastest existing planning systems. A first empirical
evaluation shows very promising results.

Introduction
Classical planning distinguishes between goal states and
non-goal states. If there is no plan leading to one of the goal
states, then classical planning simply fails. Agents in real-
istic environments cannot simply refrain from acting if not
all of their goals are achievable. Obviously, in such situa-
tions the rational thing for an agent to do is trying to achieve
the goals in the best possible way. This requires informa-
tion about the relative quality of reachable states. In other
words, what is needed is a preference relation on states. The
planning task then consists in finding an optimal plan, that
is, a plan leading to a state which is optimal according to the
given preference relation on states.

In general, the state space in planning is very large – ex-
ponential in the number of atoms used to describe a domain.
For this reason describing the preference relation on states
explicitly, e.g. by enumerating all pairs in the relation, is out
of the question. What is needed is a language which allows
the preferences to be described concisely.

In this paper we will use logical formulae to describe the
preference relation. More precisely, a ranked knowledge
base consisting of formulae representing goals together with
a total preorder describing their relative importance is used.
Ranked knowledge bases were already proposed in (Brewka
1989) and have proven useful, for instance in reasoning with
prioritized defaults.

A ranked goal base induces a partial preorder on plans de-
scribing the quality of plans in a purely qualitative fashion.
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Our focus on qualitative preferences is motivated by the fact
that users are often reluctant to specify numbers when they
are asked to describe their preferences. Qualitative prefer-
ences are much easier to elicit and sufficient for many appli-
cations.

In this paper we address two related, yet different ques-
tions in the context of planning with qualitative goal prefer-
ences:

1. Given a planning problem with ranked goals, how to com-
pute optimal plans?

2. Given a planning problem with ranked goals and a plan
P , how to test whetherP is optimal?

Considering the first question we focus on the task of com-
puting a single optimal plan. One of our design principles
was to make the computation as independent as possible of
the particular planning algorithm. This allows us to use ex-
isting planning technology and to benefit from further devel-
opments in planning. It is in contrast with approaches like
(Brafman & Chernyavsky 2005) which rely on a particular
type of planners transforming the original planning problem
into a constraint problem (see the discussion of related work
at the end of the paper for more on this issue).

Our approach is based on the observation that a state is
optimal with respect to the original partial preorder if it is
optimal with respect to a total preorder suitably extending
the original order. The total preorder can conveniently be
expressed using an integer value which is assigned to each
state.

Our planning algorithm uses this value as a lower bound
in a generate and improvemethod: we start with the com-
putation of a plan for an arbitrary goal state and compute its
value. We then iteratively call a classical planner using the
value of the most recently found reachable state as lower
bound. This way a strictly improving sequence of plans
is generated which is guaranteed to converge to an optimal
plan. We have implemented our planning algorithm using
the Metric-FF planner, one of the fastest planning sys-
tems available to date.

The second question, testing plan optimality, is also based
on a numerical reformulation of the original problem. Given
a planP terminating in states, we assign an integer value
valP to each state such thatP is optimal iff there is no plan
P ′ terminating ins′ such thatvalP (s) < valP (s′).



The rest of this paper is organized as follows. In the
next section we define what we mean by a plan optimization
problem (also called partial satisfaction problem in (van den
Briel et al. 2004)), and by an optimal plan. We then in-
troduce our preference description language using ranked
knowledge bases. Subsequently, we present our approach
of solving partial satisfaction problems. To test our ideas,
we show a realization of our preference languages extend-
ingPDDL. We briefly comment on further features of our de-
scription languages, e.g. the possibility of mixing qualitative
and quantitative preference information. In a further section
we describe our implementation and evaluation results. Af-
ter a discussion of how plan optimality can be tested, the last
section describes related work and concludes.

Plan optimization
We first recall the definition of a classical planning prob-
lem, following the textbook (Ghallab, Nau, & Traverso
2004). A classical planning problem (CPP) is a 5-tuple
Γ = (S,A, γ, sI , SG) consisting of a set1 of statesS, a set
of actionsA, a transition functionγ : S ×A → S, an initial
statesI and a description of goal statesSG ⊆ S. The tran-
sition function can be naturally extended to a functionγ∗ on
action sequences:

γ∗(s, 〈a1, . . . , an−1, an〉) := γ(γ∗(s, 〈a1, . . . , an−1〉), an)

andγ∗(s, 〈〉) := s. We say a states′ is reachable from states
if there exists a finite sequence of actionsA = 〈a1, . . . , an〉
such thatγ∗(s,A) = s′. A states′ is called solvable if it
is reachable from the initial statesI . A classical planning
problem is solvable if there is a solvable statesG ∈ SG. A
corresponding finite sequence of actionsA = 〈a1, . . . , an〉
is called solution or plan of lengthn.

The following small extension leads to the definition of
a partial satisfaction problem (PSP). A PSP is a 6-tuple
(S,A, γ, sI , SG,�) where the relation� ⊆ SG × SG is a
preorder, i.e. a reflexive and transitive relation. Intuitively,
s � s′ expresses that states is at least as preferred as state
s′. As usual the preorder induces a strict partial order (de-
noting strict preference) as follows:s ≻ s′ iff s � s′ and
s′ � s. The other elements in the 6-tuple are understood as
above.

We will use the terms “partial satisfaction problem” and
“plan optimization problem” synonymously. The former re-
flects the fact that the goal states inSG no longer represent
completely satisfactory goal states. Some of them, namely
those for which strictly better goal states exist, satisfy the
agent’s goals only partially. The latter term focuses on the
fact that taking partially satisfactory goal states into account
also requires information about their respective quality,and
that this quality needs to be optimized.

A PSP is solvable if there exists a solvable statesG ∈
SG. Whenever a PSP is solvable, there is also an optimal
solvable state, i.e. a solvable states such that for no solvable
states′ ∈ SG we haves′ � s and s � s′. An optimal
plan, also called a solution to the PSP, is a plan leading to an

1For practical purposes all relevant sets are assumed to be finite.

optimal state, that is a sequenceA = 〈a1, . . . , an〉 such that
γ∗(sI , A) is optimal among the solvable states.

In the rest of this paper we assume that the states in a
planning problem are represented as subsets of a finite set of
atomsA. Intuitively, s = {a1, . . . , ak} denotes the state in
which the atoms{a1, . . . , ak} are true and all other atoms
are false. From the point of view of logic, states thus cor-
respond to propositional models, and we will use the usual
logical satisfaction symbol|= to denote satisfaction of a for-
mula in a state with the obvious meaning.

Describing preferences on states
In this section we want to address the question how to rep-
resent the preference relation� on goal states in a PSP.
The number of states is exponential in the number of atoms.
Therefore, an enumeration of the pairs in the preference re-
lation is unfeasible and we need a concise representation of
�.

We will use logical formulae to represent preferences
among states. In the simplest case we can use a single for-
mula f and defines1 � s2 iff s2 |= f implies s1 |= f .
In many cases, however, a single formula will not be suf-
ficient and we may want to distinguish important from less
important formulae.

For this reason we will use ranked knowledge bases
(RKBs) (Brewka 1989; Benferhatet al. 1993; Pearl 1990;
Goldszmidt & Pearl 1991), sometimes also called stratified
knowledge bases, to describe� in this paper. Such knowl-
edge bases have proven fruitful in a number of approaches.
As discussed in (Brewka 2004), anRKB alone is not suffi-
cient to determine the preference relation on states, even if
all formulae are interpreted as goals. In addition, we need a
preference strategy which tells us how to use theRKB for
this purpose. Several such strategies together with a pref-
erence description language allowing to combine them are
presented in (Brewka 2004). For the purposes of this paper
we will restrict our discussion to one particular such strat-
egy.

A ranked knowledge base (RKB ) is a finite setF of
propositional formulae together with a total preorder≥ on
F . An RKB can be conveniently represented as a sequence
(F1, . . . , Fn) of sets of formulae such thatf ≥ f ′ iff for
somej: f ∈ Fj and for noi > j: f ′ ∈ Fi.

Intuitively, the formulae inFn represent the most impor-
tant goals, those inFn−1 the most important ones among the
other goals etc. The preorder on states induced by anRKB

is formally defined as follows:

Definition 1 LetK = (F1, . . . , Fn) be anRKB , S a set of
states. Fors ∈ S, j ∈ {1, . . . , n} let

Fj(s) := {f ∈ Fj | s |= f}.

The preorder onS induced byK, denoted�K , is defined as

s1 �K s2 iff Fj(s1) = Fj(s2) for all j ∈ {1, . . . , n}, or
there is aj such thatFj(s1) ⊃ Fj(s2), and
for all i > j: Fi(s1) = Fi(s2).

According to this definition, a states is considered strictly
better thans′ if – starting from leveln and proceeding step-
wise to the less preferred levels – at the first level where the



satisfied formulae do not coincides satisfies a proper super-
set of formulae.

It is not difficult to see that�K is indeed a preorder and
not necessarily a total one. Since we assume that the prefer-
ence relation on states is given by a ranked knowledge base
K as just described, we will from now on consider a PSP to
be a tuple of the formΓ = (S,A, γ, sI , SG,K).

Computing an optimal plan
PSPs are considered to be harder than classical planning
problems since finding a plan for an arbitrary element of
SG is not enough. An optimal solvable element w.r.t. the
given preference relation needs to be found. Unfortunately,
an optimal solvable element is usually not known a priori.
Instead, we have to search the set of goals for a maximum.
As a naive approach we could randomly take an elements of
SG and try to find a plan. If one is found, all elements which
are strictly smaller thans are marked as inferior and will not
be considered further. If no solution is found, the elements
and possibly certain other elements are marked unsolvable.
The states, the inferior and the unsolvable elements are re-
moved fromSG and the iteration is repeated. Although this
algorithm is somewhat better than a full exhaustive search,
it does not scale well to large spacesSG. Very often a search
for a plan for an unsolvable goal state is made, resulting in
high performance cost for search failures.

The approach adopted in this paper is based on the fact
that a state is optimal w.r.t. the preorder� whenever it is
optimal w.r.t. a suitable total order extending� which we
will call its linearization.

Let R be a preorder over some domainM of elements. In
our case the domain will be the setSG of goal states. The
derived strict preorderR> and the derived equality preorder
R= are then defined as follows:

(m,m′) ∈ R> iff (m,m′) ∈ R and(m′,m) /∈ R (1)

(m,m′) ∈ R= iff (m,m′) ∈ R and(m′,m) ∈ R. (2)

The linearized preorderRlin over the same domainM , the
corresponding derived strict and equality preorders should
satisfy the following requirements, for reasons we will see
below:

Rlin ⊇ R, (3a)

R=

lin ⊇ R=, (3b)

R>
lin ⊇ R>. (3c)

The inclusion (3a) describes the natural assumption that two
elements are in relationRlin if there are already in relationR.
The last inclusion (3c) prevents a weakening of the relation
R by linearization which is too strong. The three require-
ments are not independent. Inclusion (3a) implies (3b). (3b)
and (3c) imply (3a).

Proposition 2 Let R be a preorder over the finite domain
M , then there exists a linear preorderRlin which obeys(3a)-
(3c).

The proof of the proposition (which is omitted due to space
restrictions, see (Feldmann 2005) for further details) gives
an explicit construction ofRlin .

Proposition 3 Let m∗ be an optimal (solvable) element
with respect toRlin , thenm∗ is also an optimal (solvable)
element with respect toR.

Proof: Let m be optimal with respect toRlin . Assume there
is m′ such that(m′,m) ∈ R>, i.e. m′ is strictly better than
m with respect toR. But then (3c) implies(m′,m) ∈ R>

lin

which is a contradiction to the optimality ofm with respect
to Rlin. 2

Linearizations of partial preorders can be conveniently
represented using integers. We will now define for each
RKB K a valuation function2 valK which assigns an in-
teger value to each goal state such thats ≻K s′ implies
valK(s) > valK(s′).

Definition 4 Let K = (F1, . . . , Fn) be anRKB , s a goal
state. Letmaxval0 := 0 and for eachj (1 ≤ j ≤ n):

valj := maxvalj−1 + 1
maxvalj := |Fj | × valj + maxvalj−1

TheK-value ofs,valK(s) is defined as

valK(s) :=

n
∑

i=1

|{g ∈ Fi | s |= g}| × vali.

To see how this definition works consider theRKB

({a}, {b, c}, {d}).

We haveval1 = 1, val2 = 2 andval3 = 6. The intuition is
that satisfying a single goal of higher level leads to a higher
value than an arbitrary number of goals of lower levels. Let
s = {d} ands′ = {a, b, c}. As intended,s gets a higher
value (6) thans′ (5) reflecting the fact thats ≻K s′.

Proposition 5 The order on goal statesRvalK induced by
valK by defining(s, s′) ∈ RvalK iff valK(s) ≥ valK(s′) is
a linearization of�K .

Proof: SincevalK maps states to integers,RvalK is obvi-
ously linear. We have to show�=

K ⊆ R=

valK
(3b) and�>

K ⊆

R>
valK

(3c). These two properties imply (3a). (3b) follows
from the fact that(s, s′) ∈ �=

K iff s ands′ satisfy exactly
the same goals, in which casevalK(s) = valK(s′). (3c)
follows from the fact that whenever(s, s′) ∈ �>

K there must
be a level k such thats satisfies a proper superset of level k
goals satisfied bys′, and the same goals ass′ in all levels
with higher index. By construction, whatever the satisfied
goals of levels with lower index are,valK(s) > valK(s′).
2

We can thus find an optimal solution of a PSP by using the
valuation functionvalK . More precisely, we use a function
φK on arbitrary states defined asφK(s) = valK(s) + 1 if
s ∈ SG, φK(s) = 0 otherwise. The addition of 1 makes
sure that each goal state has a non-zero value. This is useful
for the algorithm presented below.

Let solve be a complete and correct planning algorithm
for classical planning problems which returns

• a tuple(s, π) consisting of a solvable goal states and a
corresponding planπ if the classical planning problem is
solvable.
2We also use the term metric for valuation functions.



Algorithm 1 Solving PSPΓ = (S,A, γ, sI , SG,K)

n := 0;
goals := SG;
repeat

goals := {s | s ∈ SG, φK(s) > n};
(s, π) := solve(S,A, γ, sI , goals);
n := φK(s);
print π s n

until s 6∈ goals

• the initial state (which is a non-goal state in this case) and
an empty plan if the planning problem is not solvable.

Furthermore, letΓ be a given PSP. Algorithm 1 will compute
an optimal solution forΓ if there exists at least one solution.
The algorithm works as follows:

1. It applies the classical planner to the problem
(S,A, γ, sI , SG), because forn = 0

S′

G = {s | s ∈ SG, φ(s) > n}

is just the set of solvable goal states. If this is unsolvable
thenΓ is unsolvable and the algorithm stops.

2. The algorithm tries to increase the quality of a solution of
the classical planning problem by excluding all goal states
which are not better than the current best solvable goal
statesE . Then it appliessolve to the more demanding
problem

(S,A, γ, sI , S
′

G = {s | s ∈ SG, φ(s) > φ(sE)}).

3. In each iteration step the quality of the found solvable goal
state increases. Formally the algorithm terminates if it
finds no better solvable goal state. The best solvable goal
state obtained and its corresponding plan (assuming com-
pleteness and soundness of the classical plannersolve)
constitute a solution of the PSP.

The following aspects seem important for the evaluation of
Algorithm 1 :

• Goal states are described as sets of atomic formulae. The
number of goal states can be exponential in the number of
atoms. Searching naively for a optimal solvable solution
with respect to a given preference relation requires check-
ing a vast amount of goal states. Using a linearized ver-
sion of the preference relation, this search space is usually
much smaller.

• In principle, any classical planner can be applied within
Algorithm 1 as long as it supports the restriction of the
goal set using a numerical comparison. In the following
section we will show how this can be done inPDDL2.1.
We tested this transformation using the publicly available
plannerMetric-FF (Hoffmann 2003).

• The planner will often find better solvable goal states than
required by the limitn in each iteration. This accom-
plishes a fast determination of solvable goal states with
high preferences. In the special case wheresI is already
an optimal solvable goal state, the algorithm quickly con-
firms this solution.

• Searching for a plan unsuccessfully takes a lot of time. In
Algorithm 1 such a search can happen only once, after an
optimal solvable goal state was found.

• Algorithm 1 is presented as an external function which
uses the underlying planner as black-box. In doing so, we
gained independence of the particular planning method
at the expense of performance. However, depending on
the planner at hand, it should pose no serious problem to
implement our proposed algorithm directly into the plan-
ner. In this way the performance can be increased since it
is now possible to reuse information from previous itera-
tions.

• The algorithm is sound and complete if the underlying
classical planner has the same properties. It can also be
used as an anytime-algorithm which prints successively
the best solvable goal state found so far.

Expressing PSP in PDDL based languages
In 1998PDDL (Ghallabet al. 1998), a new representation
language for planning problems extendingADL (Pednault
1989) andSTRIPS (Fikes & Nilsson 1971), has been pub-
lished. This language has become a de facto standard due to
the increasing needs for describing more realistic and there-
fore more complex planning problems.

A recent version,PDDL2.1 (Fox & Long 2003), also
supports numerical constructs. More precisely, in addition
to atomic formulae (as inSTRIPS) PDDL2.1 also sup-
portsgoal descriptions(denoted as<GD>) which consist of
complex logical formulae, numerical variables and numer-
ical comparisons. The exact syntax and semantics of goal
descriptions can be found in the definition of thePDDL2.1
language (Fox & Long 2003). Very briefly,PDDL2.1 states
can be represented as tupless = (f, ν) consisting of a set
f of atomic formulae and ak−tupleν of rational numbers.
Theith component ofν contains the value of theith numer-
ical variablevi. An atomic formula is true in a states if
it is contained inf . A numerical comparison holds if the
values of the variables inν are consistent with the compar-
ison. Using atomic formulae and numerical comparisons as
their building blocks, it is now possible to define when goal
descriptions are satisfied in a state.

It should be noted that most of today’s classical plan-
ners support a major fraction ofPDDL2.1, or go even be-
yond. In order to benefit from further improvements in this
field, we decided to develop extensions ofPDDL2.1 to ex-
press preferences and partial satisfaction problems. More
precisely, we introduce two such extensions. The first one,
calledPDDL2.1q, allows us to represent purely qualitative
goal preferences based onRKBs. Its syntax is very simple.
The induced preorder has to be defined by a preference strat-
egy. We will use Def. 1 for this purpose throughout this ar-
ticle. The second language, calledPDDL2.1∗, arises from
a somewhat different context. One motivation has been to
condense preference descriptions and the definition of the
RKB into a single language. It is also closely related to
the language of preferential algebras (Andreka, Ryan, &
Schobbens 2002), our constructsLEX andCAR correspond-
ing to the ’but’ and ’on the other hand’ operators introduced



in the cited work. FurthermorePDDL2.1∗ offers new ways
of combining numerical and qualitative measures.

An extension closely related toPDDL2.1q, called
PDDL3, was recently proposed by Gerevini and Long
(Gerevini & Long 2005). Their extension differs from ours
in several important aspects:

1. PDDL3 contains modal constructs which allow properties
of plan trajectories to be expressed. For instance, the goal
(sometime g) expresses that at some intermediate state
reached by the plang should hold. We focus entirely on
goal states.

2. Preferences inPDDL3 are numerical rather than qualita-
tive. The plan representation may contain soft constraints.
Violation of soft constraints induces certain costs. We
want to be able to specify purelyqualitativepreferences
in ourPDDL language.

Of course, our proposed extensions can also be included in
PDDL3.

The definition ofPDDL2.1q is a s follows:
<psp> ::=(define (pspname <name>)

(:problem <name>)
[(:domain <name>)]
<goal>
<psp-def>)

<psp-def> ::= (:psp <psp-node>+)
<psp-node> ::= (<GD> positive integer)

Here<GD> is a goal descriptor. The integers following
goal descriptors indicate the rank of the respective goal. We
can thus representRKBs in this language. The induced
partial preorder on states corresponds to the one defined in
Def. 1. The symbol<goal> permits the specification of
obligatory goals and overwrites a corresponding entry in the
problem description file.

The definition ofPDDL2.1∗ differs from the one above
in the description of<psp-def>:

<psp-def> ::= (:psp <psp-node>)
<psp-node> ::= (LEX <psp-node>+)
<psp-node> ::= (CAR <psp-node>+)
<psp-node> ::= (MULT <psp-node>+)
<psp-node> ::= <GD>
<psp-node> ::= non-negative integer

Intuitively, LEX represents a lexicographic ordering based
on the values of psp-nodes, where the nodes are written in
order of increasing importance.CAR allows to sum up val-
ues. In the special case where all values are 1 or 0 we obtain
the cardinality of nodes with value 1. TheMULT construct
makes it possible to multiply values.

The precise semantics of this language is determined by
its corresponding functionval : S×PDDL2.1∗ → IN which
is given in table 1. For anyPDDL2.1∗ expressionn the
preference relation�n between toPDDL2.1 statess ands′

is induced by the functionval, i.e.

s �n s′ iff val(s, n) ≥ val(s′, n).

The parameterski in the expression forLEX are chosen such
that higher values for nodes with higher index are preferred.
This can be achieved by lettingki = 1 + maxvali−1 where
maxval0 = 0 and for(1 ≤ j ≤ n) maxvalj is the maximal

PDDL2.1∗ expression n evaluation functionval(s, n)

n = (LEX n1 . . . nl) val(s, n) =
∑l

i=1
ki val(s, ni)

n = (CAR n1 . . . nl) val(s, n) =
∑l

i=1
val(s, ni)

n = (MULT n1 . . . nl) val(s, n) =
∏l

i=1
val(s, ni)

n = goal description val(s, n) =

{

1 if s � n

0 otherwise
n = d, d ∈ IN val(s, n) = d

Table 1: The evaluation functionval : S×PDDL2.1∗ → IN
maps into the domain of natural numbers. The constantski

in theLEX construct are chosen in such a way that it is al-
ways preferable to have a higher value for a node with higher
index. They can be calculated in advance.

value that can be obtained by the sum
∑j−1

i=1
ki val(s, ni).

The exact inductive definition is straightforward and thus
omitted.

Following the general discussion in the section on com-
puting optimal plans, we introduce a functionφ defined as
φ(s) = val(s, n) + 1 if s ∈ SG andφ(s) = 0 otherwise.
We will call the non-negative integerφ(s) of a states the
numerical preference value for that state.

Preference descriptions derived fromRKBs can be easily
represented in this language.
Proposition 6 Let K = (F1, . . . , Fn) be a RKB with
ranked setsFi = {f1

i , . . . , fmi

i } of formulae. The linearized
preorder corresponding tovalK is equivalent to the pre-
order defined by thePDDL2.1∗ expression

(LEX (CAR f1

1
. . . fm1

1
) . . . (CAR f1

n . . . fmn

n )).

Consequently, withinPDDL2.1∗ the user can define prefer-
ence descriptions both quantitatively and qualitatively.

Implementation
According to Algorithm 1, a PSP is solved by translating
the originalPDDL2.1 description and the specification of
the preference relation (given inPDDL2.1∗) into a (mod-
ified) PDDL2.1 problem. To specify the restricted set of
goal statesS′

G we make use of a numerical comparison. In
detail, the translation of thePDDL2.1∗ problem consists of
several steps:
1. For each goal descriptiongi in the preference expression

n a numerical variablewi is introduced. Substituting the
variables in thePDDL2.1∗ expressionn will be denoted
by writing n[{w}i].

2. A mechanism has to be devised such thatwi is 1 if the
planner considers a state in whichgi is satisfied, and oth-
erwisewi is 0. This can be achieved by a modification of
the actions of the originalPDDL2.1 problem.

3. A numerical comparison(φ[{w}i] > qC) is added to the
goal list. Hereφ[{w}i] denotes the numerical expression
which is obtained by applying theφ function symbolically
to the expressionn[{w}i]. This numerical comparison
restricts the number of goal states to those statess which
haveφ(s) > qC .



(define
(pspname PSP868)
(:problem depotprob7512)
(:goal

( and
(on crate0 pallet2)
(on crate3 pallet1)

)
)
(:psp

( LEX
(available hoist2)
(clear crate0)
(lifting hoist2 crate2)

)
) )

Figure 1: A complete PSP description inPDDL2.1∗. Two
obligatory goals are specified in the:goal field and three
soft constraints in:psp. Among the latter, the goal
(available hoist2) has the lowest preference and
(lifting hoist2 crate2) the highest.

4. The algorithm has to give back the valueq′C = φ(s) of
the found solvable goal states of the modifiedPDDL2.1
problem. This value is determined by numerically evalu-
ating the expressionφ[{w}i] in states.

In our implementation, Algorithm 1 is performed by a
Perl-script. The original PSP problem is parsed in a first step
(usingbison andflex) and translated intoPDDL2.1 by
modifying the actions and adding a numerical constraint as
indicated above. It should be noted that in our implementa-
tion we restrict goal descriptions to literals. Furthermore, we
allow only binaryMULT constructs with at least one compo-
nent being a non-negative integer. As described in detail in
(Feldmann 2005), there is no difficulty in actually extend-
ing this implementation to the general case. We stick to
the restricted language since our translation scheme would
otherwise lead to non-linear numerical expressions, which
Metric-FF is currently not able to handle.

As an example, a very simplePDDL2.1∗ description is
shown in Fig. 1. Fig. 2 presents excerpts of the modified
domain and Fig. 3 excerpts of the problem file. In both
cases, the modifications due to the translation ofPDDL2.1∗

into PDDL2.1 are indicated by bold letters. A com-
plete version of this example can be found on our website
http://www.physik.uni-leipzig.de/∼feldmann/psp/.

After the translation into PDDL2.1 the planner
Metric-FF is called. It has been modified slightly to re-
turn the preference value of the found solution. With the
help of his value, the numerical constraint is updated and the
planner is evoked again. If the return value ofMetric-FF
is not strictly better than its previous value, the algorithm
terminates.

We see the following advantages of our implementation:
(1) it is based on a simple and easily extendible syntax, (2)
it allows for the description of both qualitative and quantita-
tive preferences, (3) soft constraints (preferences) and hard
constraints (required goals) are combined in a natural way.

(:functions
(LOAD_LIMIT ?T - TRUCK )
(CURRENT_LOAD ?T - TRUCK )
(WEIGHT ?C - CRATE )
(FUEL-COST )
(PSP_V-1 )
(PSP_V-2 )
(PSP_V-3 )
(PSP_START_METRIC )
(PSP_MAX_METRIC )

) (:action UNLOAD
:parameters (?X - HOIST ?Y - CRATE

?Z - TRUCK ?P - PLACE)
:precondition (and (AT ?X ?P) (AT ?Z ?P)

(AVAILABLE ?X) (IN ?Y ?Z))
:effect
(and (not (IN ?Y ?Z))
(not (AVAILABLE ?X))
(LIFTING ?X ?Y)
(decrease (CURRENT_LOAD ?Z)(WEIGHT ?Y))
(when (and(= ?X HOIST2))

(and(assign (PSP_V-1) 0)))
(when (and(= ?X HOIST2)(= ?Y CRATE2))

(and(assign (PSP_V-3) 1)))
)

)

Figure 2: An excerpt of the translatedPDDL domain. The
modified pieces are shown in bold face. The introduced nu-
merical variablesPSP V-i correspond to thei-th soft con-
straint in the psp decription.

(:init
...
(= (PSP_V-1) 1)
(= (PSP_V-2) 1)
(= (PSP_V-3) 0)
(= (PSP_START_METRIC) 1)
(= (PSP_MAX_METRIC) 7)

) (:goal
(and (ON CRATE0 PALLET2)

(ON CRATE3 PALLET1)
(<= (PSP_START_METRIC)

(+ (* 1(PSP_V-1))
(+ (* 2(PSP_V-2))

(* 4(PSP_V-3)))))
)

)

Figure 3: An excerpt of the translatedPDDL problem file.
The modified pieces are shown in bold face. In addition to
the two obligatory goals the problem description now also
contains a numerical comparison.



(:goal ( and
(( on crate0 pallet2 ) hard 1000 )
(( on crate3 pallet1 ) hard 1000 )
(( available hoist2 ) soft 2)
(( clear crate0 ) soft 3)
(( lifting hoist2 crate2 ) soft 5) ))

Figure 4: Excerpt of aSapaps problem file constructed by
translating the corresponding PSP in figure 1. The weights
are calculated following table 1 except that an additional
constant of 1 is added to each soft constraint.

Evaluation
In this section we present initial tests of our algorithm. For
this purpose we use the depot domain enriched with numer-
ical expressions which was a planning domain of the IPC3
competition. In order to check validity and correctness of
our approach, we compare our results withSapaps (Do &
Kambhampati 2003), which is an existing planning system.
The test runs are performed as follows. In a first step the do-
main and problem descriptions are parsed. This information
is used to build our benchmark problems in a random fash-
ion, i.e. rules of thePDDL2.1∗ language and the grounding
instances of predicates are chosen randomly from a uniform
distribution. The nesting level of our generated PSP ranges
from 1 to 3. Literals are not allowed as top-level PSP-nodes
in order to avoid an excessive number of problems contain-
ing just a single formula. The number of childnodes is re-
stricted to 4 or less. For the sake of a clear comparison be-
tween our algorithm andSapaps, we are neither invoking
theMULT rule nor do we use negated literals. Between 1 and
31 soft constraints are contained in each of our benchmark
problems. This distribution has an approximately normal
shape with a mean of 12.9 and a standard deviation of 5.9
soft constraints. Additionally, a random selection of goals
of the originalPDDL problem description is transferred to
our PSPs constituting hard (obligatory) goals.

In order to employ Sapaps, we transformed our
PDDL2.1∗ problems into quantitive problems using
weights on goals. This step is analogous to the translation
of PDDL2.1∗ descriptions into thePDDL2.1 language de-
scribed in the last section. One particular example of the
generated PSP problems is listed in Fig. 1. In Fig. 4 an ex-
cerpt from the correspondingSapaps problem file is shown.

We would like to stress thatSapaps is a system designed
for best-benefit problems which differ from our problems
in taking costs of actions into account. The main focus of
Sapaps lies on solving quantitative problems while our al-
gorithm can also deal with purely qualitative problems. On
the other hand,Sapaps can handle time domains which our
implementation so far cannot.

It should also be noted thatSapaps cannot parse nu-
merical comparisons. Since the original depot domain con-
tains such a comparison, we use for both planners a mod-
ified version of the original depot domain where the nu-
merical comparison is removed. When considering and
comparing running times it should be stressed thatSapaps

is a Java-based application while our algorithm employs

Figure 5: The results for a particular problem are presented
which contains no hard goals and 17 soft goals. In this exam-
ple, both our approach (solid line) andSapaps (dotted line)
could find a satisfiable goal state. The number of iterations
refers to either the number of loop passages of our algorithm
or to the number of internal cycles ofSapaps. Top: the de-
velopment of the benefit normalized to the maximal possi-
ble benefit. Bottom: The number of satisfied soft constraints
normalized to their total number. The search times for this
example are 100ms (our algorithm) and 23s (Sapaps), re-
spectively.

Metric-FF which is written in C.
The approach ofSapaps relies on action costs to guide

its search. Therefore, assigning non-zero action costs is es-
sential in order to compare the two systems. More precisely,
too small (<0.01) or too high (>100) action costs prevent
Sapaps from finding a solvable goal state when run on our
benchmark problems. We found that cost values of about 0.1
seem to work best. The action costs are re-added to the bene-
fit after each run. In conclusion, we emphasize thatSapaps

might not be the optimal choice for comparison purposes but
it is one of the best systems at hand at the moment.

All tests were performed on a AMD Athlon 64 4000+
with 2GB RAM running Debian Linux. We generated 1000
benchmark problems, characterized by different numbers of
hard and soft constraints. A maximal heap space of 1GB
was allowed for the Java machine runningSapaps. This
value was chosen after initial tests and seems to be a good
choice. In order to obtain results in manageable time, we as-
signed timeouts to both systems. For theSapaps system we
chose a time limit of 60s for each problem. For our system
we tried several time limits ranging from 100ms to 60s.

Fig. 5 shows a particular problem which both planners
were able to solve. This problem contains no hard and 17



problems posed plan found better benefit

MFF sapa both MFF sapa

Total 1000 994 507 504 336 1

HG0 SG00-05 24 24 24 24 7 -

HG0 SG05-10 70 70 70 70 42 -

HG0 SG10-15 90 90 90 90 65 -

HG0 SG15-20 85 85 84 84 71 -

HG0 SG20-50 44 41 42 39 33 1

HG1 SG00-05 33 33 13 13 2 -

HG1 SG05-10 87 87 40 40 18 -

HG1 SG10-15 136 136 59 59 44 -

HG1 SG15-20 90 90 31 31 28 -

HG1 SG20-50 69 67 14 14 10 -

HG2 SG00-05 12 12 3 3 1 -

HG2 SG05-10 59 59 16 16 3 -

HG2 SG10-15 58 58 9 9 3 -

HG2 SG15-20 64 64 8 8 8 -

HG2 SG20-50 25 24 1 1 1 -

HG3 SG00-05 10 10 2 2 - -

HG3 SG05-10 5 5 1 1 - -

HG3 SG10-15 17 17 - - - -

HG3 SG15-20 14 14 - - - -

HG3 SG20-50 5 5 - - - -

HG4 SG05-10 1 1 - - - -

HG4 SG15-20 2 2 - - - -

Table 2: The statistical results comparing our algorithm and
Sapaps on the generated benchmark problems. A time limit
of 10s has been applied to our algorithm. For theSapaps

system we chose a larger time limit of 60s. The partial sat-
isfaction problems are classified according to the number of
soft and hard goals, i.e. HGi SGj-k corresponds to the set of
problems containingi hard goals and betweenj (inclusive)
andk (exclusive) soft constraints. The number of problems
in set HGi SGj-k is given in the second column. The third
column shows the number of problems for which a solvable
goal state and a corresponding plan has been found. The last
column compares the benefit of the problems for which both
planners found a solvable goal state.

soft goals. Evidently, the behavior is rather similar for a
low number of iterations, but our system converges faster
with respect to the number of iterations and with respect to
searching time. In this example, both approaches find an
optimal solution of the PSP. The optimality of the solution
could be confirmed by our algorithm setting the time limit to
60s. This specific example is not representative, but demon-
strates the proper working of our algorithm.

The results of both planners on our benchmark problems
are summarized in Tab. 2. We note that for almost all prob-
lems our algorithm could find at least a satisfiable goal state.
Interestingly, some of the unsolved problems have a triv-
ial solution. Regarding theMetric-FF system this is due
to the fact that only up to 25 soft constraints can be spec-
ified. We could have increased this limit by adapting the
planner’s source code. Following our methodology of be-
ing planner independent, we decided to avoid such modi-
fications. We added, however, a simple output function to
return the reached numerical preference value. In Tab. 2 the

time limit plan found optimal plan found optimality proved

0.1s 994 640 47

1s 994 892 49

10s 994 988 186

60s 994 989 989

Table 3: The optimality results of our approach using vari-
ous time limits from 100ms to 60s. Smaller limits have not
been used due to the low precision of time measurements be-
low 100ms. The second column shows the number of prob-
lems for which a solvable goal state was found. The third
column states the number of PSPs for which an optimal so-
lution was computed within the time limit, independently
of whether optimality was proven by the system. The last
column indicates for how many problems optimality could
actually be proven within the time limit.

difficulty of problems increases from top to bottom. At the
same time the number of problems for whichSapaps can
find a solvable goal state decreases. Choosing a larger time
limit might help to obtain better results forSapaps. Our ap-
proach performs well on all our benchmark problems. In a
future analysis it would be interesting to evaluate our algo-
rithm on even more difficult problems.

So far we have addressed the question of whether a solv-
able goal state can be found. In order to actually solve a par-
tial satisfaction problem, we need to find an optimal solvable
goal state. In fact, we want to distinguish two different opti-
mality results. A planner can find a solution of a given PSP
with and without knowing that the found solvable goal state
is actually optimal. In order to prove optimality, the plan-
ner has to perform an unsuccessful and thus time-consuming
search. Considering this difference, the results of our algo-
rithm on the benchmark problems are shown in Tab. 3. For
most of the benchmark problems our algorithm finds an op-
timal solvable goal state very quickly, i.e. within a fraction
of a second. We also confirm that it takes a rather long time
to prove optimality of the found solution.

In summary, we have demonstrated that our approach of
solving PSPs actually works in practical situations, is flexi-
ble and applicable to a large range of different problem sizes.
For the benchmark problems at hand, our approach generally
returns a plan of equal or better quality than theSapaps sys-
tem. In addition, since we useMetric-FF as underlying
planner, our approach is much faster thanSapaps.

Testing plan optimality
So far we have discussed in this paper the following ques-
tion:

Given a PSPΓ, specified via a ranked goal baseK, how
do we compute an optimal plan forΓ?

The answer we gave was based on a strengthening of the
partial order on plans induced byK. The idea was to come
up with a linearization whose optimal elements are guaran-
teed to be optimal elements of the original partial ordering
on plans. This linearization can easily be translated to a nu-
merical measure, which is then represented in a correspond-



ing metric to be used incrementally as a lower bound for the
computation of plans.

In this section we want to address the following question:

Given a PSPΓ, specified via a ranked goal baseK, and
a planP . How do we check whetherP is optimal?

Note that this is not as trivial as it may appear at first sight.
We cannot just compute the metric we used so far, compute
the value for planP and check whether a plan with higher
value exists. The reason is that, although we are guaranteed
to find an optimal plan this way, it is not guaranteed that
an optimal plan is also optimal with respect to the lineariza-
tion. Indeed, in most cases some optimal plans will become
suboptimal after linearization.

Consider a simple example. We have the following RKB
of goals:

({d}, {a, b, c})

that is,a, b andc are the most important goals,d is less im-
portant than the others. Assume there are 2 plans achieving
maximal subsets of all goals,P1 with goal states1 = {a, b}
andP2 with goal states2 = {c, d}. P1 andP2 are incompa-
rable since their sets of reached goals of highest importance,
{a, b} and{c}, respectively, are not in subset relation. How-
ever, the metric we used so far strictly prefersP1. Simply
using this metric and checking whether a plan with higher
value exists thus does not give the correct results.

For testing optimality of plans another metric is needed.
This metric will have to depend on the planP to be tested.
The idea is to use a metric where the satisfaction of a new
goal of the same level can only lead to a higher overall value
whenever all goals of this level satisfied byP are also satis-
fied.

The comparison of plans is based on the comparison
of the goals they achieve. For this reason it is sufficient
to define the metric on sets of ranked goals. LetK =
(G1, . . . , Gn) be the givenRKB of goals, i.e. elements of
Gn are of highest priority, those ofGn−1 of second highest
etc. Let(S1, . . . , Sn) be the sequence of subsetsSi ⊆ Gi

of goals satisfied by planP , (N1, . . . , Nn) those goals not
satisfied byP (i.e.,Ni = Gi \ Si).

We need to find a numerical measurevalP assign-
ing an integer to anRKB R such that valP (R) >
valP (S1, . . . , Sn) iff R is strictly preferred to(S1, . . . , Sn).
Now if there is a plan obtaining goals with measure higher
than that ofP , thenP is not optimal.

We definevalP inductively as follows (in principle, all
functions should have an additional indexP . We omit this
index here for readability):

maxval0 = 0

for eachj (1 ≤ j ≤ n) let

negvalj = maxvalj−1 + 1
posvalj = |Nj | × negvalj + maxvalj−1 + 1
maxvalj = |Sj | × posvalj + |Nj | × negvalj

+maxvalj−1

Let R = (R1, . . . , Rn) be anRKB . We define

valP (R) :=

n
∑

i=1

(|Ri∩Si|×posvali+|Ri∩Ni|×negvali).

Intuitively, negvalj is the value of an unsatisfied goal
from levelj, posvalj is the value of a satisfied goal from that
level,maxvalj is the maximal value which can be obtained
by satisfying all goals of levelj and below, andvalP (R) is
the sum of all values of goals in any level ofR. The values
are chosen such that satisfying an additional goal at levelj
leads to a higher overall value provided the same goals are
satisfied at all levels with higher index. We will also use
the notationvalP (g) for a goalg with the obvious meaning:
valP (g) = posvalj iff g ∈ Sj andvalP (g) = negvalj iff
g ∈ Nj .

Proposition 7 Let (S1, . . . , Sn) be the goals satisfied by
plan P . P is an optimal plan iff there is no planP ′ such
that

valP (S1, . . . , Sn) < valP (S′

1
, . . . , S′

n),

whereS′

j are the goals contained inGj satisfied byP ′.

Proof: AssumeP is not optimal. Then there is a planP ′

and levelk such thatP andP ′ satisfy the same goals in lev-
els higher thank, andP ′ satisfies a proper superset of goals
in level k. Since by construction satisfying an additional
goal in levelk adds a higher value than satisfying an arbi-
trary set of goals from levels1, . . . , k − 1, the overall value
for P ′ is higher than that forP .

Similarly, if P is optimal then we have for each planP ′

that eitherP ′ satisfies exactly the same goals asP (in which
case the overall value is not higher than forP ), or there is a
levelk such thatP andP ′ satisfy the same goals in all levels
j > k, andP ′ does not satisfy some goalg of level k satis-
fied byP . Again, by construction, the loss by not satisfying
g is higher than the maximal gain obtained by satisfying any
goal of leveli ≤ k not satisfied byP . The overall value for
P ′ is thus not higher than that forP . 2

Consider our example. SinceP2 achieves({c}, {d}), we
obtain the following values:

valP2
(d) = 1 valP2

(a) = 2

valP2
(b) = 2 valP2

(c) = 6

The overall value forP2 is thus 7, the value forP1 is 4,P2 is
thus optimal. Of course, we also establish thatP1 is optimal.
It is easy to verify that in this case the metric yields

valP1
(d) = 1 valP1

(a) = 4

valP1
(b) = 4 valP1

(c) = 2

With these values we obtain an overall value of 8 forP2, a
value of 3 forP1. We have established thatP2 is an optimal
plan as well.

With these results we can compute the optimality test for
P as follows: we first generatevalP (g) for each goal and
compute the overall value forP . We then add the description
of the metric to the plan description using the overall value,
incremented by 1, as lower bound.P is optimal iff no plan
satisfying this bound exists.

Discussion and related work
(Brafman & Chernyavsky 2005) present an approach to
planning with goal preferences which shares a lot of motiva-
tion with our proposal, but which also differs in several im-
portant aspects. Their work is based on a particular planning



method developed in (Do & Kambhampati 2001). The plan-
ning problem is converted into an equivalent constraint sat-
isfaction problem (CSP) using a Graphplan encoding (Blum
& Furst 1997). Brafman and Chernyavsky then use an algo-
rithm for constrained optimization over CSPs (Brafman &
Domshlak 2002) which uses so-called TCP-nets, a general-
ization of CP-nets, for preference elicitation and representa-
tion.

Firstly, our proposal differs from this approach in the way
preferences are represented. Rather than CP-nets which give
preferences aceteris paribus(other things being equal) in-
terpretation under which only states differing in exactly one
atom can be directly compared, we use ranked knowledge
bases representing ranked user goals. As demonstrated in
(Coste-Marquiset al. 2004), CP-nets cannot represent arbi-
trary preferences among states, a restriction which does not
apply toRKBs. Secondly, whereas the approach in (Braf-
man & Chernyavsky 2005) depends on a particular planning
method, our approach is independent of the method chosen
for classical planning and is thus able to benefit from further
developments in this area. All we require from the classical
planner is its ability to handle numerical values adequately.

There are also several related papers on oversubscription
planning (van den Briel, Nigenda, & Kambhampati 2004;
Smith 2004), i.e. planning with a large number of goals
which cannot all be achieved. The major difference here is
that we use qualitative preferences whereas the cited papers
add real-valued weights to the goals which then are used for
computing preferences. In many settings qualitative pref-
erences appear more natural and are easier to elicit from
users than numerical preferences. Moreover, as pointed out
in (Brafman & Chernyavsky 2005), the algorithms used in
both papers are not guaranteed to reach an optimal solution.

In (Eiter et al. 2002) an answer set programming ap-
proach to planning under action costs is presented. Here the
criterion for plan optimality is not the quality of the reached
goal state, but the accumulated costs of actions in the plan.

Son and Pontelli (Son & Pontelli 2004) define a flexible
language for expressing qualitative preferences in answer
set planning. The language includes temporal logic con-
structs for expressing preferences among trajectories. We
focus here on preferences among goal states in the context
of classical planning approaches.

The authors of (Delgrande, Schaub, & Tompits 2004) in-
troduce two types of preferences among trajectories of tran-
sition systems, choice preferences and temporal preferences.
They later show that the latter actually can be reduced to the
former. As in our approach, formulae are used to express
preferences, but there are no preferences among the formu-
lae themselves. Furthermore, the mentioned authors are in-
terested in the question whether a formula is satisfied some-
where in the history, whereas we consider the satisfiability
in the final state only. Moreover, computational aspects play
a minor role in (Delgrande, Schaub, & Tompits 2004).

In this paper we presented an approach to prioritized plan-
ning which usesRKBs to express qualitative preferences
among goal states. To compute an optimal plan we translate
the preference preorder on states to a valuation function such

that optimal states with respect to the latter are guaranteed to
be optimal with respect to the former. A similar translation
method allows us to test plans for optimality. Our algorithm
computes a sequence of strictly improving plans and is guar-
anteed to terminate with an optimal plan. Furthermore, our
implementation is independent of a particular approach to
classical planning which we see as an important advantage
of our proposal. Results of an empirical evaluation we pre-
sented are promising.
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