Publications by M. Bordag
(ORCID 0000-0002-6752-9983)

[1]   Michael Bordag. On instabilities caused by magnetic background fields. Symmetry, 15(6), 2023. URL: https://www.mdpi.com/2073-8994/15/6/1137, doi: 10.3390/sym15061137.

[2]   M. Bordag. Tachyon condensation in a chromomagnetic background field and the groundstate of QCD. Eur. Phys. J. A, 59:55, 2023. arXiv 2207.08711. doi:10.1140/epja/s10050-023-00966-0.

[3]   M. Bordag and V. Skalozub. Effective potential of gluodynamics in background of Polyakov loop and colormagnetic field. Eur. Phys. J. C, 82:390, 2022. arXiv 2112.01043. arXiv:2112.01043.

[4]   M. Bordag, I. Fialkovsky, N. Khusnutdinov, and D. Vassilevich. Bulk contributions to the Casimir interaction of Dirac materials. Phys. Rev. B, 104:195431, 2021. ArXiv 2107.10369. URL: https://link.aps.org/doi/10.1103/PhysRevB.104.195431, arXiv: 2107.10369, doi:10.1103/PhysRevB.104.195431.

[5]   M. Bordag and V. Skalozub. A0–condensation in quark-gluon plasma with finite baryon density. Eur. Phys. J. C, 81:998, 2021. ArXiv 2009.11734.

[6]   M. Bordag and I. G. Pirozhenko. The Closed Piecewise Uniform String Revisited. Vestnik Balt. Univ., Fiz-Mat Series, 1:51–72, 2021. ArXiv 2012.14301. URL: https://elibrary.ru/item.asp?id=46117909.

[7]   Michael Bordag. Vacuum Energy for a Scalar Field With Self-Interaction in (1 + 1) Dimensions. Universe, 7:55, 2021.

[8]   M. Bordag and I. G. Pirozhenko. Free Energy and Entropy for an Impurity in a Periodic Background in One Dimension. Journal of Physics and Electronics, 28:29, 2020.

[9]   M. Bordag, J. M. Munoz-Castaneda, and L. Santamaría-Sanz. Free energy and entropy for finite temperature quantum field theory under the influence of periodic backgrounds. Eur. Phys. J. C, 80(3), 2020. doi: {10.1140/epjc/s10052-020-7783-3}.

[10]   M. Bordag. Conditions for Bose-Einstein condensation in periodic background. J. Phys., A53(1):015003, 2020. doi:10.1088/1751-8121/ ab5b41.

[11]   M Bordag. Casimir effect for impurity in periodic background in one dimension. J. Phys. A: Math. Gen., 53(32):325401, 2020. URL: https://doi.org/10.1088%2F1751-8121%2Fab9463, doi:10.1088/ 1751-8121/ab9463.

[12]   M. Bordag. On Bose-Einstein condensation in one-dimensional lattices of delta functions. Mod. Phys. Lett., A35(03):2040005, 2020. doi:10.1142/ S0217732320400052.

[13]    J. M. Muñoz Castañeda, M. Bordag, and L. Santamaría-Sanz. Revisiting the Casimir Energy with General Boundary Conditions and applications in 1D Crystals. Mod. Phys. Lett., A35(03):2040018, 2020. arXiv:1910.08142, doi:10.1142/S0217732320400180.

[14]   M. Bordag, J. M. Muñoz-Castañeda, and L. Santamaría-Sanz. Free energy and entropy for finite temperature quantum field theory under the influence of periodic backgrounds. 2019. arXiv: 1911.05875. arXiv:1911. 05875.

[15]   M. Bordag and V. Skalozub. Photon dispersion relations in A0-background. EPJ Plus, 134:289, 2019. arXiv 1809.08117. arXiv: 1809.08117.

[16]   Michael Bordag, Jose M. Muñoz Castañeda, and Lucia Santamaría-Sanz. Vacuum energy for generalised Dirac combs at T = 0. Front. Phys., 7:38, 2019. arXiv:1812.09022.

[17]   M. Bordag. Entropy in some simple one-dimensional configurations. Arxiv: 1807.10354 [quant-ph], 2018.

[18]   M. Bordag. Free energy and entropy for thin sheets. Phys. Rev. D, 98:085010, 2018.

[19]   M Bordag and K Kirsten. On the entropy of a spherical plasma shell. J. Phys. A: Math. Gen., 51:455001, 2018.

[20]   M. Bordag and I.G. Pirozhenko. Dispersion forces between fields confined to half spaces. Symmetry, 10(3):74, 2018. URL: http://www.mdpi.com/2073-8994/10/3/74, arXiv:quant-ph/1803.08113, doi:10.3390/sym10030074.

[21]    M Bordag, G L Klimchitskaya, and V M Mostepanenko. Nonperturbative theory of atom-surface interaction: corrections at short separations. Journal of Physics: Condensed Matter, 30(5):055003, 2018.

[22]   M. Bordag. Vacuum and thermal energies for two oscillators interacting through a field. Theor. Mat. Phys., 195:834, 2018. arXiv:1707.06214.

[23]   M. Bordag. Casimir and Casimir-Polder forces with dissipation from first principles. Phys. Rev. A, 96:062504, 2017. doi:10.1103/PhysRevA.96. 062504.

[24]   M. Bordag, I. Fialkovsky, and D. Vassilevich. Casimir Interaction of Strained Graphene. Phys. Lett. A, 381:2439, 2017.

[25]   M. Bordag and I.G. Pirozhenko. Casimir Effect for Dirac Lattices. Phys. Rev. D, 95:056017, 2017. ArXiv: 1701.0261.

[26]   M. Bordag and I. G. Pirozhenko. Surface plasmon on graphene at finite T. Int. J. Mod. Phys. B, 30:1650120, 2016. arXiv:1508.07721.

[27]   M. Bordag, I. Fialkovsky, and D. Vassilevich. Enhanced Casimir effect for doped graphene. Phys.Rev.B, 93:075414, 2016.

[28]   M. Bordag and I.G. Pirozhenko. QED and surface plasmons on graphene. Int. J. Mod. Phys. A, 31:1641027, 2016.

[29]   M. Bordag and I.G. Pirozhenko. Surface plasmons for doped graphene. Phys. Rev. D, 91:085038, 2015.

[30]   M. Bordag and J.M. Muñoz Castañeda. Dirac Lattices, Zero-Range Potentials and Self Adjoint Extension. Phys. Rev. D, 91:065027, 2015.

[31]   M. Bordag, G. L. Klimchitskaya, V. M. Mostepanenko, and V. M. Petrov. Quantum field theoretical description for the reflectivity of graphene. Phys. Rev. D, 91:045037, 2015.

[32]   J.M. Munoz-Castaneda, Klaus Kirsten, and M. Bordag. QFT over the finite line. Heat kernel coefficients, spectral zeta functions and selfadjoint extensions. Lett.Math.Phys., 105:523–549, 2015.

[33]   Matthew Beauregard, Michael Bordag, and Klaus Kirsten. Casimir energies in spherically symmetric background potentials revisited. J. Phys. A: Math. Gen., 48:095401, 2015.

[34]   M. Bordag and V. Skalozub. On the type of the temperature phase transition in O(N) models within a perturbative analysis. Preprint arXiv:1404.6658, 2014.

[35]   M. Bordag. Low Temperature Expansion in the Lifshitz Formula. Adv. Math. Phys., page 981586, 2014. arXiv:quant-ph/1212.0213.

[36]   M. Bordag. Monoatomically thin polarizable sheets. Phys. Rev. D, 89:125015, 2014.

[37]   J.M. Munoz-Castaneda and M. Bordag. Quantum vacuum interaction between two cosmic strings revisited. Phys. Rev. D, 89:065034, 2014.

[38]   M. Bordag and I.G. Pirozhenko. Transverse-electric surface plasmon for graphene in the Dirac equation model. Phys. Rev. B, 89:035421, 2014.

[39]   Irina G. Pirozhenko and Michael Bordag. Casimir repulsion in sphere-plate geometry. Phys. Rev. D, 87:085031, 2013.

[40]   M. Bordag. Surface plasmon for graphene in the Dirac equation model. 2012. ArXiv 1212.1894. arXiv:1212.1894.

[41]   M. Bordag, G.L. Klimchitskaya, and V.M. Mostepanenko. Thermal Casimir effect in the interaction of graphene with dielectrics and metals. Phys. Rev. B, 86:165429, 2012.

[42]   M. Bordag, G.L. Klimchitskaya, and V.M. Mostepanenko. Comment on ’Casimir Force and In Situ Surface Potential Measurements on Nanomembranes’. Phys. Rev. Lett., 109:199701, 2012.

[43]   M. Bordag, V. I. Demchik, A. V. Gulov, and V. V. Skalozub. On the Type of the Temperature Phase Transition in O(N) Models. Problems Of Atomic Science And Technology, 1:43–47, 2012. 3rd International Conference on Quantum Electrodynamics and Statistical Physics (QEDSP), Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, UKRAINE, AUG 29-SEP 02, 2011.

[44]   M. Bordag, V. Demchik, A. Gulov, and V. Skalozub. The Type of the Phase Transition and Coupling Values in Lambda Phi(4) Model. Int. J. Mod. Phys. A, 27, 2012.

[45]   M. Bordag and V. Skalozub. Groundstate projection of the charged SU(2) polarization tensor in a chromomagnetic background field at finite temperature. Phys. Rev. D, 85:065018, 2012.

[46]   M. Bordag. Electromagnetic Vacuum Energy for two Parallel Slabs in Terms of Surface, Wave Guide and Photonic Modes. Phys. Rev. D, 85:025005, 2012.

[47]   M. Bordag and J.M. Munoz-Castaneda. Quantum vacuum interaction between two sine-Gordon kinks. J. Phys. A: Math. Gen., 45:374012, 2012.

[48]   L. P. Teo, M. Bordag, and V. Nikolaev. On the corrections beyond proximity force approximation (PFA). Phys. Rev. D, 84:125037, 2011.

[49]   J. M. Munoz-Castaneda and M. Bordag. Quantum fields bounded by one-dimensional crystal plates. J. Phys. A: Math. Gen., 44:415401, 2011.

[50]   M. Bordag. Drude Model and Lifshitz Formula. Eur. Phys. J. C, 71:1788, 2011.

[51]   Michael Bordag and Irina G. Pirozhenko. The Low temperature corrections to the Casimir force between a sphere and a plane. In D. Sáez-Gómez, S. D. Odintsov, and S. Xambó, editors, Cosmology, The Quantum Vacuum, and Zeta Functions, pages 45–56. Springer Verlag, 2011.

[52]   Sergey Antropov, Michael Bordag, Vadim Demchik, and Vladimir Skalozub. Long range chromomagnetic fields at high temperature. Int. J. Mod. Phys., A26:4831–4843, 2011. arXiv:1011.3147, doi:10.1142/ S0217751X11054747.

[53]   M. Bordag and I. G. Pirozhenko. On the Casimir entropy for a ball in front of a plane. Phys. Rev. D, 82:125016, 2010. arXiv:1010.1217.

[54]   Michael Bordag and Irina G. Pirozhenko. The low temperature corrections to the Casimir force between a sphere and a plane. 2010. ArXiv 1007.2741.

[55]   M. Bordag and I. Pirozhenko. Vacuum energy between a sphere and a plane at finite temperature. Phys. Rev. D, 81:085023, 2010.

[56]   M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers. J. Phys., A43:015402, 2010. arXiv: 0911.3231.

[57]   M. Bordag and V. Nikolaev. First analytic correction beyond the proximity force approximation in the Casimir effect for the electromagnetic field in sphere-plane geometry. Phys.Rev.D, 81:065011, 2010.

[58]   M. Bordag, I. V. Fialkovsky, D. M. Gitman, and D. V. Vassilevich. Casimir interaction between a perfect conductor and graphene described by the Dirac model. Phys. Rev. B, 80:245406, 2009.

[59]   M. Bordag and V. Nikolaev. Beyond Proximity Force Approximation in the Casimir effect. Int. J. Mod. Phys. A, 24:1743–1747, 2009.

[60]   M. Bordag and V. Nikolaev. The vacuum energy for two cylinders with one increasing in size. J. Phys. A: Math. Gen., 42:415203, 2009.

[61]   M. Bordag and V. Skalozub. Polarization tensor of charged gluons in color magnetic background field at finite temperature. Phys. Rev. D, 77:105013, 2008.

[62]   M. Bordag and N. Khusnutdinov. On the vacuum energy of a spherical plasma shell. Phys.Rev.D, 77:085026, 2008.

[63]   M. Bordag and V. Nikolaev. Casimir force for a sphere in front of a plane beyond proximity force approximation. J. Phys. A: Math. Gen., 41:164002, 2008.

[64]   M. Bordag, A. Ferludin, N. Khandoga, and V. Skalozub. The green function of neutral gluons in color magnetic background field at finite temperature. J. Phys. A: Math. Gen., 41:164045, 2008.

[65]   M. Bordag. On the interaction of a charge with a thin plasma sheet. Phys. Rev. D, 76:065011, 2007.

[66]   M. Bordag, A. Ribayrol, G. Conache, L. E. Fröberg, S. Gray, L. Samuelson, L. Montelius, and H. Pettersson. Shear stress measurements on InAs nanowires by AFM manipulation. Small, 3:1398 – 1401, 2007.

[67]   M. Bordag. Generalized Lifshitz formula for a cylindrical plasma sheet in front of a plane beyond proximity force approximation. Phys.Rev.D, 75:065003, 2007.

[68]   M. Bordag and V. Skalozub. Neutral gluon polarization tensor in color magnetic background at finite temperature. Phys. Rev. D, 75:125003, 2007. arXiv:hep-th/0611256.

[69]   M Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions. Phys.Rev.B, 74:205431, 2006.

[70]   M. Bordag. The Casimir effect for a sphere and a cylinder in front of plane and corrections to the proximity force theorem. Phys. Rev. D, 73:125018, 2006. arXiv:hep-th/0602295.

[71]   M. Bordag, Y. O. Grebenyuk, and V. V. Skalozub. Nontransversality of the gluon polarization tensor in a chromomagnetic background field. Theoretical and Mathematical Physics, 148(1):910–922, 2006.

[72]   M. Bordag and V. Skalozub. Gluon polarization tensor in color magnetic background. Eur. Phys. J., C 45:159–178, 2006.

[73]   M. Bordag. The Casimir effect for thin plasma sheets and the role of the surface plasmons. J. Phys. A: Math. Gen., 39:6173–6185, 2006. arXiv: hep-th/0511269.

[74]   M. Bordag, I. G. Pirozhenko, and V. V. Nesterenko. Spectral analysis of a flat plasma sheet model. J. Phys., A38:11027, 2005. arXiv:hep-th/ 0508198.

[75]   I. G. Pirozhenko, V. V. Nesterenko, and M. Bordag. Integral equations for heat kernel in compound media. J. Math. Phys., 46:042305, 2005. arXiv:hep-th/0409289.

[76]   M. Bordag. Reconsidering the quantization of electrodynamics with boundary conditions. Int. J. Mod. Phys., A20:2505–2509, 2005.

[77]   M. Bordag. Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences. Phys. Rev., D70:085010, 2004. arXiv:hep-th/0403222.

[78]   M. Bordag and D. V. Vassilevich. Nonsmooth backgrounds in quantum field theory. Phys. Rev., D70:045003, 2004. arXiv:hep-th/0404069.

[79]   M. Bordag and I. Drozdov. Fermionic vacuum energy from a Nielsen-Olesen vortex. Phys. Rev., D68:065026, 2003. arXiv:hep-th/ 0305002.

[80]   M. Bordag. Vacuum energy of a color magnetic vortex. Phys. Rev., D67:065001, 2003. arXiv:hep-th/0211080.

[81]   M. Bordag and A. Yurov. Spontaneous symmetry breaking and reflectionless scattering data. Phys. Rev., D67:025003, 2003. arXiv:hep-th/ 0206199.

[82]   Michael Bordag, Alfred Scharff Goldhaber, Peter van Nieuwenhuizen, and Dmitri Vassilevich. Heat kernels and zeta-function regularization for the mass of the susy kink. Phys. Rev., D66:125014, 2002. arXiv:hep-th/0203066.

[83]   M. Bordag, H. Falomir, E. M. Santangelo, and D. V. Vassilevich. Boundary dynamics and multiple reflection expansion for Robin boundary conditions. Phys. Rev., D65:064032, 2002. arXiv:hep-th/0111073.

[84]   M. Bordag and K. Kirsten. Heat kernel coefficients and divergencies of the Casimir energy for the dispersive sphere. Int. J. Mod. Phys. A, 17:813–819, 2002. arXiv:hep-th/0110217.

[85]   M. Bordag and V. Skalozub. Temperature phase transition and an effective expansion parameter in the O(N)-model. Phys. Rev. D, 65:085025, 2002. arXiv:hep-th/0107027.

[86]   M. Bordag and V. Skalozub. Summing Superdaisy Diagrams in the O(N)-Model near the Phase Transition Temperature. Theor.Mat.Phys., 131:450–458, 2001. (translated from Teor.Mat.Fiz, 131 (2002) p.4-14).

[87]   M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. Reply to comment on ’Casimir force at both nonzero temperature and finite conductivity’. Phys. Rev. Lett., 87:259102, 2001.

[88]   Michael Bordag, Vladimir V. Nesterenko, and Irina G. Pirozhenko. High temperature asymptotics in terms of heat kernel coefficients: Boundary conditions with spherical and cylindrical symmetries. Nucl. Phys. Proc. Suppl., 104:228–231, 2002. arXiv:hep-th/0107005.

[89]   M. Bordag, U. Mohideen, and V. M. Mostepanenko. New Developments in the Casimir Effect. Phys. Rept., 353:1–205, 2001. arXiv:quant-ph/ 0106045.

[90]   Michael Bordag, D. Vassilevich, H. Falomir, and E. M. Santangelo. Multiple reflection expansion and heat kernel coefficients. Phys. Rev., D64:045017, 2001. arXiv:hep-th/0103037, doi:10.1103/PhysRevD.64. 045017.

[91]   M. Bordag and I. G. Pirozhenko. The heat kernel coefficients for the dielectric cylinder. Phys. Rev. D, 64:025019, 2001. arXiv:hep-th/0102193.

[92]   M. Bordag and V. Skalozub. Phase transition in scalar ϕ4 theory beyond the super daisy resummations. J. Phys. A: Math. Gen., 34:461–71, 2001. arXiv:hep-th/0006089.

[93]   Vladimir Skalozub and Michael Bordag. Color ferromagnetic vacuum state at finite temperature. Nucl. Phys. B, 576:430–44, 2000. arXiv: hep-ph/9905302.

[94]   G. Lambiase, V. V. Nesterenko, and M. Bordag. Casimir energy of a ball and cylinder in the zeta function technique. Journ. Math. Phys., 40:6254–6265, 1999. arXiv:hep-th/9812059.

[95]   M. Bordag and K. Kirsten. The ground state energy of a spinor field in the background of a finite radius flux tube. Phys. Rev. D, 60:105019, 1999. arXiv:hep-th/9812060.

[96]   M. Bordag and D. V. Vassilevich. Heat kernel expansion for semitransparent boundaries. J. Phys. A., 32:8247–8259, 1999. arXiv: hep-th/9907076.

[97]   M. Bordag, K. Kirsten, and D.V. Vassilevich. On the ground state energy for a penetrable sphere and for a dielectric ball. Phys. Rev. D, 59:085011, 1999.

[98]   N. R. Khusnutdinov and M. Bordag. Ground state energy of massive scalar field in the background of finite thickness cosmic string. Phys. Rev., D59:064017, 1999. arXiv:gr-qc/9810066.

[99]   M. Bordag and K. Scharnhorst. O(alpha) radiative correction to the Casimir energy for penetrable mirrors. Phys. Rev. Lett., 81:3815–3818, 1998. arXiv:hep-th/9807121.

[100]   M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. Constraints for hypothetical interactions from a recent demonstration of the Casimir force and some possible improvements. Phys. Rev., D58:075003, 1998. arXiv:hep-ph/9804223.

[101]   M. Bordag, J. Lindig, and V. M. Mostepaneko. Particle creation and vacuum polarization of nonconformal scalar field near the isotropic cosmological singularity. Class. Quant. Grav., 15:581, 1998.

[102]   M. Bordag and J. Lindig. Radiative correction to the Casimir force on a sphere. Phys. Rev. D, 58:045003, 1998. arXiv:hep-th/9801129.

[103]   E. Elizalde, M. Bordag, and K. Kirsten. Casimir energy for a massive fermionic quantum field with a spherical boundary. J. Phys. A, A31:1743–1759, 1998. arXiv:hep-th/9707083.

[104]   M. Bordag, K. Kirsten, and D. V. Vassilevich. Path integral quantization of electrodynamics in dielectric media. J. Phys. A, 31:2381, 1998. arXiv: hep-th/9709084.

[105]   M. Bordag, G. T. Gillies, and V. M. Mostepanenko. New constraints on the Yukawa - type hypothetical interaction from the recent Casimir force measurement. Phys. Rev., D56:6–10, 1997. arXiv:hep-th/9705101.

[106]   M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte. Casimir energies for massive fields in a spherical geometry. Phys. Rev. D, 56:4896–4904, 1997. arXiv:hep-th/9608071.

[107]   M. Bordag, K. Kirsten, and J.S. Dowker. Heat kernels and functional determinants on the generalized cone. Commun. Math. Phys., 182:371–394, 1996. arXiv:hep-th/9602089.

[108]   M. Bordag and N. Khusnutdinov. A Remark on bound states in conical space-time. Class. Quant. Grav., 13:L41–L46, 1996.

[109]   M. Bordag and K. Kirsten. Vacuum energy in a spherically symmetric background field. Phys. Rev. D, 53:5753–5760, 1996. arXiv:hep-th/ 9608070.

[110]   M. Bordag and J. Lindig. Vacuum energy density in arbitrary background fields. J. Phys., A29:4481–4492, 1996.

[111]   (ed. ) M. Bordag. Quantum field theory under the influence of external conditions. Proceedings, 3rd Workshop, Leipzig, Germany, September 18-22, 1995. Stuttgart, Germany: Teubner (1996) 279 p. (Teubner-Texte zur Physik), 1996.

[112]   J. S. Dowker, J. S. Apps, K. Kirsten, and M. Bordag. Spectral invariants for the Dirac equation on the d ball with various boundary conditions. Class. Quant. Grav., 13:2911–2920, 1996. arXiv:hep-th/9511060.

[113]   M. Bordag, B. Geyer, K. Kirsten, and E. Elizalde. Zeta function determinant of the Laplace operator on the D-dimensional ball. Commun. Math. Phys., 179:215–234, 1996. arXiv:hep-th/9505157.

[114]   M. Bordag, E. Elizalde, and K. Kirsten. Heat kernel coefficients of the Laplace operator on the D-dimensional ball. J. Math. Phys., 37:895–916, 1996. hep-th/9503023.

[115]   M. Bordag, B. Geyer, K. Kirsten, and E. Elizalde. Zeta function determinant of the Laplace operator on the D- dimensional ball. Commun. Math. Phys., 179:215, 1996. arXiv:hep-th/9505157.

[116]   M. Bordag, G. L Klimchitskaya, and V. M. Mostepaneko. The Casimir force between plates with small deviations from plane parallel geometry. Int. J. Mod. Phys., A10:2661–2682, 1995.

[117]   M. Bordag. Vacuum Energy in Smooth Background Fields. J. Phys., A28:755–766, 1995.

[118]   M. Bordag and A. A. Bytsenko. Quantum corrections to the entropy for higher spin fields in hyperbolic space. Grav. Cosmol., 1:266, 1995. arXiv:gr-qc/9412054.

[119]   M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko. Corrections to the casimir force between plates with stochastic surfaces. Physics Letters A, 200(2):95–102, 1995.

[120]   S. A. Voropaev and M. Bordag. The Role of boundary conditions in the Aharonov-Bohm effect for particles with spin. J. Exp. Theor. Phys., 78:127, 1994. JINR-P4-93-136.

[121]   M. Bordag and S. Voropaev. Bound states and scattering of an electron in the field of the magnetic string. Phys. Lett., B333:238, 1994.

[122]   M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko. Casimir force between two parallel plates with small distortions of different types. Mod. Phys. Lett., A9:2515–2526, 1994.

[123]   M. Bordag, V. M. Mostepannko, and I. Yu. Sokolov. Restrictions on the hypothetical long range interactions from the Casimir type null experiment with three test bodies. Mod. Phys. Lett., A9:2671–2680, 1994.

[124]   M. Bordag, V. M. Mostepanenko, and I. Yu. Sokolov. On the strengthening of restrictions on hypothetical Yukawa type forces with extremely small range of action. Phys. Lett., A187:35, 1994.

[125]   M. Bordag and S. Voropaev. Charged particle with magnetic moment in the Aharonov-Bohm potential. J. Phys. A, A26:7637, 1993. arXiv: hep-th/9304017.

[126]   M. Bordag, D. Hennig, and D. Robaschik. Vacuum energy in quantum field theory with external potentials concentrated on planes. J. Phys. A, A25:4483, 1992.

[127]   M. Bordag, D. Robaschik, and E. Wieczorek. Problems with the zeta function method. Lett. Math. Phys., 25:1–6, 1992.

[128]   M. Bordag. The Vacuum interaction of magnetic strings. Annals Phys., 206:257, 1991.

[129]   M. Bordag. On the vacuum interaction of two parallel cosmic strings. Annalen Phys., 47:93, 1990.

[130]   M. Bordag, D. Robaschik, and E. Wieczorek. Electromagnetic Mass Correction for a Charged Particle Due to Conducting Boundaries. Phys. Lett. A, 132:145–150, 1988.

[131]   M. Bordag, L. Kaschluhn, D. Robaschik, and V. A. Matveev. Generating Functionals for Green’s Functions in Gauge Field Theories. Theor. Math. Phys., 70:278, 1987.

[132]   M. Bordag. On the Apparatus Dependence of the Anomalous Magnetic Moment of the Electron. Phys. Lett., B171:113, 1986.

[133]   M. Bordag, F. M. Dittes, and D. Robaschik. Casimir Effect with Uniformly Moving Mirrors. Sov. J. Nucl. Phys., 43:1034, 1986.

[134]   B. Geyer, D. Robaschik, M. Bordag, and J. Horejsi. Nonlocal Light Cone Expansions and Evolution Equations. Z. Phys., C26:591, 1985.

[135]   M. Bordag, E. Wieczorek, and D. Robaschik. Radiation Corrections to the Casimir Effect. (in Russian). Yad. Fiz., 39:1053, 1984.

[136]   S. A. Anikin, M. Bordag, and O. I. Zavyalov. Infrared Divergences of Green’s Functions and Renormalization in Massless Theories. III. Theor. Math. Phys., 56:741–745, 1984.

[137]   M. Bordag, D. Robaschik, and E. Wieczorek. Quantum Field Theoretic Treatment of the Casimir Effect. Ann. Phys., 165:192, 1985.

[138]   M. Bordag, G. Petrov, and D. Robaschik. Calculation of the Casimir Effect for Scalar Fields with the Simplest Nonstationary Boundary Conditions. Sov. J. Nucl. Phys., 39:828, 1984.

[139]   M. Bordag and L. Kaschluhn. On the Light Cone Expansion in Gauge Field Theories (QED). Annalen Phys., 44:265–282, 1987.

[140]   M. Bordag, L. Kaschluhn, G. Petrov, and D. Robaschik. Nonlocal Operators in Light Cone Expansion of QCD. Sov. J. Nucl. Phys., 37:112, 1983.

[141]   M. Bordag and D. Robaschik. The Altarelli-Parisi Equations as Renormalization Group Equations for the Coefficients of the Nonlocal Light Cone Expansion. Theor. Math. Phys., 49:1063, 1982.

[142]   M. Bordag, B. Dörfel, D. Robaschik, and E. Wieczorek. The Asymptotic Behavior of Form-Factors. Nucl. Phys., B188:46, 1981.

[143]   M. Bordag and D. Robaschik. Light Cone Expansion in Renormalized Perturbation Theory. Nucl. Phys., B169:445, 1980.

[144]   M. Bordag and A.N. Vasilev. Hidden Connections and Functional Integral-Representation of Partition-Function of Canonical Ensemble. Theor. Math. Phys., 34:232–238, 1978.