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Abstract. – In recent analytical work, Biskup et al. (Europhys. Lett., 60 (2002) 21) studied
the behaviour of d-dimensional finite-volume liquid-vapour systems at a fixed excess δN of
particles above the ambient gas density. By identifying a dimensionless parameter Δ(δN) and
a universal constant Δc(d), they showed in the limit of large system sizes that for Δ < Δc the
excess is absorbed in the background (“evaporated” system), while for Δ > Δc a droplet of the
dense phase occurs (“condensed” system). Also the fraction λΔ of excess particles forming the
droplet is given explicitly. Furthermore, they argue that the same is true for solid-gas systems.
By making use of the well-known equivalence of the lattice-gas picture with the spin-(1/2)
Ising model, we performed Monte Carlo simulations of the Ising model with nearest-neighbour
couplings on a square lattice with periodic boundary conditions at fixed magnetisation, cor-
responding to a fixed particles excess. To test the applicability of the analytical results to
much smaller, practically accessible system sizes, we measured the largest minority droplet,
corresponding to the solid phase, at various system sizes (L = 40, . . . , 640). Using analytic
values for the spontaneous magnetisation m0, the susceptibility χ and the Wulff interfacial free
energy density τW for the infinite system, we were able to determine λΔ numerically in very
good agreement with the theoretical prediction.

Introduction. – The formation and dissolution of equilibrium droplets at a first-order
phase transition is one of the longstanding problems in statistical mechanics [1]. Quantities of
particular interest are the size and free energy of a “critical droplet” that needs to be formed
before the decay of the metastable state via homogeneous nucleation can start. For large but
finite systems, this is signalised by a cusp in the probability density of the order parameter φ
towards the phase-coexistence region as depicted in figs. 1 and 2 for the example of the two-
dimensional (2D) Ising model, where φ = m is the magnetisation. This “transition point”
separates an “evaporated” phase with many very small bubbles of the “wrong” phase around
the peak at φ0 from the “condensed phase” phase, in which a large droplet has formed; for
configuration snapshots see fig. 3. The droplet eventually grows further towards φ = 0 until it
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Fig. 1 – Schematic plot of the probability density log P (m) of the magnetisation in logarithmic form.
The marked box indicates the position of the cut-out displayed in fig. 2.

Fig. 2 – Probability density of the magnetisation for the two-dimensional Ising model around its
right peak for different system sizes L at the temperature T = 1.5. The cusp indicates the evapora-
tion/condensation transition region. On the right side of the cusp (evaporated system) a Gaussian
peak is clearly visible, while on the left side (condensed system) a stretched exponential behaviour can
be seen. The two arrows on the x-axis indicate for L = 640 the range of data points shown in fig. 5.

percolates the finite system in another “droplet-strip” transition. The latter transition is indi-
cated in the 2D Ising model by the cusp at the beginning of the flat two-phase region (see fig. 1).

Building on the seminal work by Fisher [1] on the droplet picture, early numerical studies
of the evaporation/condensation transition by Binder, Kalos and Furukawa [2,3] date back to
the beginning of the 1980s. Recently, this problem has been taken up again by Hager and one
of the authors [4] who discussed it with emphasis on possible Gibbs-Thomson and Tolman
corrections. This stimulated further new theoretical [5–7] and numerical [8] work. Here, we
follow the exposition of Biskup et al. [5,6], who present their results both in a phenomenological

Fig. 3 – Two snapshots of a L = 50 system at the same value of the magnetisation. Left: evaporated
system, a large number of very small bubbles exist (1 to 3 spins). Right: condensed system, a single
large droplet that has absorbed nearly all small bubbles.
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liquid-vapour (or solid-gas) picture and also explicitly in terms of the simple Ising (lattice-gas)
model. The distinguishing feature of their work is the formulation of a proper equilibrium
theory which does not need to explicitly involve correction effects à la Gibbs-Thomson or
Tolman [9]. We consider this feature as one of the main merits of their formulation which can
be shown to be equivalent (at least in leading order) to the earlier less rigorous treatment in [4].

The price one has to pay, however, is a rather intricate rescaling of the original problem
which requires in numerical work great care with details. To set the theoretical grounds
for our Monte Carlo simulation study and, in particular, to develop intuition for the final
representation of our results in fig. 5 below, we therefore start first with a brief summary of
the Biskup et al. [5, 6] theory. In order to so, we restrict ourselves to the special case of the
2D Ising model with a Hamiltonian

H = −J
∑
〈i,j〉

σiσj , (1)

where σi = ±1 and 〈i, j〉 denotes a nearest-neighbour pair. If an up-spin (σi = 1) is treated as
a particle and a down-spin (σi = −1) as a vacancy, the system can be interpreted as a lattice
gas of atoms.

Theory. – Consider the 2D Ising model (1) in the low-temperature phase at an inverse
temperature β ≡ J/kBT > βc = ln

(
1 +

√
2
)
/2 and denote the infinite-volume equilibrium

magnetisation per site by m0 = m0(β) > 0, i.e., assume that the system is in the phase with
positive magnetisation. For a system of finite volume V = L×L, we now ask how fluctuations
can drive the nucleation of the “wrong” phase with negative magnetisation −m0. If the
“wrong” phase occupies a total volume vL, the total magnetisation of the system M =

∑
i σi

can be expressed as M = −m0vL+m0 (V − vL). Rearranging this expression for the difference
in the magnetisation yields

δM = M − V m0 = −2vLm0 . (2)

Next, to answer the question as to how the nucleation of the “wrong” phase proceeds, two
contributions to the free energy can be easily identified. First, there can be local fluctuations
leading to many small nucleation bubbles. If the total excess in the magnetisation (compared
to M0 = m0V ) of δM = M − M0 goes into these fluctuations, then the probability to find
δM can be expressed in terms of a Gaussian distribution as

exp
[
− (δM)2

2V χ

]
= exp

[
− (2m0vL)2

2V χ

]
, (3)

where χ = χ(β) = βV
[〈m2〉 − 〈m〉2] is the susceptibility in the thermodynamic limit.

In the second extreme case, the total excess is taken up by a single large droplet of volume
vL (cf. fig. 4). The cost to form it depends on the interface of the droplet, which is given in
two dimensions [10] as

exp [−τW
√

vL ] , (4)

where τW = τW(β) is the interfacial free energy per unit volume of an ideally shaped droplet,
also known as the free energy of a droplet of Wulff shape [11].

Comparing the exponents of the two limiting cases in eqs. (3) and (4) gives

Δ =
(2m0vL)2/(2V χ)

τW
√

vL
= 2

m2
0

χτW

v
3/2
L

V
. (5)

With Δ != 1 (the free energy contributions of the droplet and the fluctuations are of equal
size) and eq. (2), the difference in the magnetisation (which is a negative quantity) can be
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Fig. 4 – Ising system of size V with a minority droplet of volume vL of negative spins surrounded
by positive spins with a volume (V − vL), shown in the extreme case where the total excess in
magnetisation is concentrated in the droplet, i.e. vd = vL.

expressed as

−δM = θV 2/3 with θ =
(

2χτW√
2m0

)2/3

. (6)

Under the assumption that the total excess goes into either one of the two excitations, this
means that the droplet mechanism dominates when −δM � θV 2/3, while the fluctuation
mechanism dominates for −δM � θV 2/3. A priori one would suspect, however, that both
types of excitations can coexist, with the excess volume vL split up between the local fluctua-
tions and the droplet. Biskup et al. [5,6] studied the crossover region −δM ∝ vL ∝ θV 2/3. By
isoperimetric reasoning, they proved that in this range no droplets of intermediate size can ex-
ist [6]. Hence, there is at most a single large droplet of size vd < vL with costs exp

[−τW
√

vd

]
that absorbs δMd = −2vdm0 of the complete excess of the magnetisation δM , while the rest
vL − vd goes into the fluctuations of the background with costs exp

[−(δM − δMd)2/(2V χ)
]
.

In the limit of large system sizes, this justifies for the probability of the excess in magnetisation
the ansatz

exp
[
−τW

√
vd − (δM − δMd)2

2V χ

]
= exp

[
−τW

√−δM

2m0
ΦΔ(λ)

]
, ΦΔ(λ) =

[√
λ + Δ(1 − λ)2

]
, (7)

where λ = δMd/δM is the fraction taken up by the droplet and Δ is defined in eq. (5). Taking
into account that τW

√−δM/2m0 and Δ are constants, the fraction of excess that is most
probable is obtained by minimising ΦΔ(λ). As a function of Δ, the solution λΔ behaves like at
a first-order phase transition. For values Δ < Δc the global minimum of ΦΔ(λ) is reached for
λ = 0, while for Δ > Δc it is located at a nontrivial value λΔ > 0. At the transition point Δ =
Δc, the solution jumps to a value λc > 0. In two dimensions, one obtains Δc = (1/2)(3/2)3/2 ≈
0.92 and λc = 2/3. The solid line in fig. 5 below shows the graph of λΔ in two dimensions.
Physically it can be interpreted as follows: for values Δ < Δc all of the excess is absorbed in the
background fluctuations, then, at the transition point Δ = Δc, a fraction of 2/3 of the excess
forms a droplet while the rest of the excess remains as background fluctuations. For values
Δ > Δc the droplet grows and thereby absorbs more and more of the background fluctuations.

Numerical results. – The main aim of our work was to test from which system sizes
on the theoretical results presented in the last section start to yield a good description of
the data. In order to do so, λΔ, the fraction of the excess of magnetisation in the largest
droplet, had to be measured in dependence on Δ. All simulations were performed at a
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Table I – Numerical values for the magnetisation m0, susceptibility χ and Wulff interfacial free
energy density τW entering the parameters Δ = Δ(vL, m0, χ, τW) and θ = θ(m0, χ, τW) defined in
eqs. (5) and (6) at the simulation temperature T = 1.5.

T Tc m0 χ τW 2m2
0/τWχ θ

1.500 2.269 0.9865 0.02708 4.245 16.93 0.2993

temperature T = 1.5 ≈ 0.66Tc which gives a good compromise between simulation speed
(freezing at low temperatures) and compactness of the droplet (see the r.h.s. of fig. 3 for a
typical configuration).

In order to get the correct scaling for the abscissa, Δ(vL,m0, χ, τW) had to be calculated ac-
cording to eq. (5). Having a constant magnetisation M , the value of vL is fixed by eq. (2). The
spontaneous magnetisation m0 is given by the famous Onsager-Yang analytic solution [12,13]

m0(β) =
(
1 − sinh−4 (2β)

)1/8
, (8)

and also the susceptibility χ is basically known to arbitrary precision from very long series
expansions, e.g., Orrick et al. [14] give the formula

χ(β) = β

n∑
i=0

ciu
2i with u =

1
2 sinh(2β)

(9)

and c = {0, 0, 4, 16, 104, 416, 2224, 8896, 43840, 175296, 825648, 3300480, 15101920, ...} up
to order 323 (the last term contributes ≈ 0.28×10−158). Finally, for the free energy ΣW of the
Wulff droplet, Leung and Zia [15] were able to derive the analytic expression ΣW = 2

√
WΣ.

Here, Σ is the volume of the droplet and W is the volume bounded by the Wulff plot. Putting
Σ = 1 gives the interfacial free energy per unit volume

τW(β) = 2
√

W . (10)

In the case of the Ising square lattice the volume of the Wulff plot is given by [15]

W =
4
β2

∫ βσ0

0

dx cosh−1

[
cosh2(2β)
sinh(2β)

− cosh(x)
]

, (11)

where σ0 = 2 + ln[tanh(β)]/β is the interface tension of the (1,0) surface (i.e., in direction of
the axis).

Table I gives the numerical values for eqs. (8), (9) and (10) at the simulation temperature
T = 1.5. It is interesting to note that under the crude assumption of an isotropic interface
tension σ0, and therefore a circular Wulff shape, the interface tension per unit volume at
T = 1.5 is 2

√
πσ0 = 4.219. This is quite close (99.37%) to the correct value τW = 4.245.

In a first step we determined the relevant region of the magnetisation roughly. This was
done utilising a multimagnetic simulation and inspecting the distribution of the magnetisation
shown in fig. 2 visually. The distribution exhibits for larger lattice sizes a clear cusp which
divides the evaporated and condensed region. Within the evaporated region it has a Gaussian
form according to eq. (3), while in the condensed region a stretched exponential behaviour is
visible, cf. eq. (4). To get a feeling on what the configurations look like on the different sides
of the cusp, fig. 3 displays an evaporated and condensed system, respectively. Both systems
have the same magnetisation which was chosen to be that at the transition point. Even so the
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Fig. 5 – Two-dimensional Ising model with nearest-neighbour interaction on square lattices of size
L = 40, 80, . . . , 640 with periodic boundary conditions at the temperature T = 1.5 ≈ 0.66 Tc. The
error bars are not plotted since their size is much smaller than that of the data symbols. The solid
line shows the analytic solution in the limit L → ∞.

pictures show situations that occurred during a simulation, they represent the extreme cases
regarding the size of the largest droplet.

We compared the observed cusp region to the theoretically expected value

M(Δ) = V m0 −
(

2ΔχτWV√
2m0

)2/3

= V m0 − Δ2/3θV 2/3 , (12)

obtained by inserting eq. (2) in (5) and solving for M . For Δ = 0.92 ≈ Δc and θ ≈ 0.2993 from
table I, this yields for L = 640 the estimate m ≈ 0.9827. Encouraged by the good agreement
with our data in fig. 2, we decided to fix the magnetisation by selecting a set of 38 reasonable
values Δi = {0.00, 0.10, ...} with an emphasis on the vicinity of Δc. The corresponding values
of the magnetisation must be rounded to the next allowed integer value and then the true Δi

are calculated backwards.
Next, we started 38 simulations with constant magnetisation (micromagnetic). The con-

straint on the magnetisation was enforced utilising a Metropolis update with Kawasaki dy-
namics essentially exchanging a pair of unaligned spins. After every sweep a cluster decom-
position was performed using the Hoshen-Kopelman [16] algorithm and the volume of the
largest droplet was measured yielding the desired λΔ. Two things are to be noted here: First,
the range of magnetisations that was chosen guaranteed that the droplet was always the sec-
ond largest cluster (the background is the largest cluster). Second, in the present context
the volume of the cluster includes overturned spins within the cluster. Our simulations are
sensitive to a degree that the proper counting of the cluster size turned out to be indeed
crucial. Technically, this was handled by a so-called “flood-fill”routine [17] that ran after the
Hoshen-Kopelman algorithm. In essence, it starts from an inside spin and stops when a spin
that belongs to the background is reached. Very rarely ambiguous cases can occur which
can be detected automatically and were taken care of by inspection. We repeated the whole
procedure for five different lattices sizes L = 40, 80, 160, 320, and 640. Every simulation ran
20000 sweeps for the thermalisation and 200000 sweeps for measurements. To obtain the error
bars reliably, 10 independent simulations were run for each data point.

Our main result, the fraction λΔ for various lattice sizes, is shown in fig. 5. The solid
line represents the analytical value (obtained by the minimisation of φΔ(λ) in eq. (7)). For



722 EUROPHYSICS LETTERS

larger lattice sizes the theoretical value is approached by the results of the simulation. The
jump from λΔ ≈ 0 to λΔ ≈ 2/3 at Δc ≈ 0.92 confirms the theoretical prediction that at the
evaporation/condensation transition only 2/3 of the excess of the magnetisation goes into the
droplet while the rest remains in the background fluctuations.

The increase of λΔ for Δ → 0 can be explained by the fact that the minimal cluster size is
1 and not an arbitrarily small fraction. In contrast, the excess that can be fixed analytically
using eq. (5) can be much smaller than 1.

Conclusion. – Our Monte Carlo data clearly confirm the theoretical considerations of
Biskup et al. [5,6] and extend their exact results for very large systems to practically accessible
system sizes. The observed finite-size scaling behaviour fits perfectly with their predictions for
the infinite system. All simulations were performed in thermal equilibrium and the abundance
of droplets of intermediate size could be confirmed. At the moment, additional simulations
for different models are performed that should prove the universal aspects of the theory.
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[6] Biskup M., Chayes L. and Kotecký R., Commun. Math. Phys., 242 (2003) 137.
[7] Binder K., Physica A, 319 (2003) 99.
[8] Virnau P., MacDowell L. G., Müller M. and Binder K., Computer Simulation Studies in

Condensed Matter Physics XVI, edited by Landau D. P., Lewis S. M. and Schüttler H.-B.
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