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The Metric of Bures and the Geometric Phase.

Armin Uhlmann

University of Leipzig, Dept. of Physics

After the appearance of the papers of Berry [1], Simon [2], and of Wilczek and Zee
[3], I tried to understand [4], whether there is a reasonable extension of the
geometric phase - or, more accurately, of the accompanying phase factor - for
general (mixed) states. A known recipe for such exercises is to use purifications:
One looks for larger, possibly fictitious, quantum systems from which the original
mixed states are seen as reductions of pure states. For density operators there is a
standard way to do so by the use of Hilbert Schmidt operators (or by Hilbert
Schmidt maps from an auxiliary Hilbert space into the original one).
Thus let

c : t 7→ %t, 0 ≤ t ≤ 1 (1)

be a path of density operators. A standard purification of (1) is a path

t 7→ Wt, %t = WtW
∗
t (2)

sitting in the Hilbert space of Hilbert Schmidt operators with scalar product

< W1,W2 >:= tr W ∗
1 W2 (3)

The construction of standard purifications is by no means unique. Indeed, not only
(2) but every gauged path

Wt → WtUt, Ut unitary, (4)

is a purification of the same path of density operators.

The problem is, therefore, to distinguish within all purifications of the curve (1) of
mixed states exceptional ones. In [4] this has been achieved as following. Let
W1, ...., Wm be a subdivision of (2), i.e. a time-ordered subset of operators (2).
These operators are of norm one since the density operators have trace one. Now
the expression

ξ =< Wm, Wm−1 > ... < W3,W2 >< W2,W1 > (5)

will be considered according to (4) for all gauges

ξ 7→ ξ̃ by Wj 7→ WjUj, Uj unitary, (6)
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and it will be looked within the set of gauged ξ̃ for choices with

|ξ̃| = maximum! (7)

The necessary and sufficient condition for (7) reads [5], [6]:

| < W̃j+1, W̃j > | = tr (%
1/2
j %j+1%

1/2
j )1/2 for j = 1, . . . , m− 1 (8)

It should be remarked that

p(%1, %2) := (tr (%
1/2
1 %2%

1/2
1 )1/2) (9)

is called transition probability of the pair %1, %2.
If (8) and hence (7) is fulfilled, the remaining arbitrariness is in a regauging
W̃j → εjUW̃j of the subdivision by numbers of modulus one and by an independent
of j unitary U - provided the rank of the density operators (1) remains constant.
This, however, means the gauge invariance of the quantity

X 7→ νsubdivision
c (X) = ξ < W̃1, XW̃m > (10)

and it depends therefore only on the ordered set of the density operators
%k = WkW

∗
k . In the limit of finer and finer subdivisions,

X 7→ νc(X) := lim νsubdivision
c (X), (11)

one obtains a gauge invariant linear form depending only on the original path (1).
For closed loops of pure states the number νc(1) is exactly Berry’s phase factor.

(11) defines a certain noncommutative product integral. For curves of faithful
density operators it can be conveniently expressed by the help of the geometric
(quadratic) mean

a#b := a
1
2 (a−

1
2 ba−

1
2 )

1
2 a

1
2 (12)

of two positive operators [8], [9]. To this end one introduces the holonomy V (c) of
c by

νc(X) = trV (c)%0X (13)

to find [20] ( - in [20] the exponents are not correctly assigned - )

V (c) = lim
subdivisions

(%m#%−1
m−1)(%m−1#%−1

m−2) · · · (%2#%−1
1 ) (14)

My next aim is to obtain expressions of the above procedure which are more
manageable. One idea is to use an infinitesimal variant of (8). Indeed one may
sharpen (8) by adding the requirement

W̃ ∗
j+1 W̃j ≥ 0 (15)

which in turn implies (8) for faithful density operators. Going to finer and finer
subdivisions - and removing the tilde - (15) results in (Ẇ denotes the t-derivation
of W )

W ∗ Ẇ = Ẇ ∗ W, (16)
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the so-called parallelity condition [4] : A lift (2) of (1) fulfilling (16) is called a
(standard) parallel purification or a parallel lift. Thus choosing a parallel
purification of (1), it is

νc(X) = < W0, XW1 > (17)

where W0 and W1 are the starting and the end point of a parallel lift.
Though the word parallel points to a parallel transport governed by a connection
form (described later on), a more elementary explanation is possible. The scaler
products of the subdivision attain their maximal possible value if (8) is true. The
vectors Wj have norm one and hence the scalar product is the cosine between
neighbouring vectors. Therefore (8) indicates that the angles between
neighbouring vectors is as small as possible. Hence for infinitesimal neighbouring
they are parallelly directed.
Note that from (16) it follows for parallel lifts

W ∗ Ẅ = Ẅ ∗ W, (18)

Another idea is already indicated in a paper of Fock [7], who tried to minimize the
arbitrariness in the transport of phases of degenerate eigenstates of Hamiltonians.
The observation [10] is as following: After choosing appropriate phases in (5) the
scalar products < Wj+1, Wj > can be made real and positive. But then ξ in (7)
attains its maximum if and only if

‖ Wm −Wm−1 ‖ +...+ ‖ W3 −W2 ‖ + ‖ W2 −W1 ‖ (19)

attains its minimum. On the other hand, in going to finer and finer subdivisions,
(19) tends to the length of the curve (2) in the metric given by (3). Therefore a
purification (2) is a parallel one iff it solves the variational problem

∫ √
< Ẇ , Ẇ >dt = Min ! (20)

However, the Euler equations of this variational problem are nothing else than the
parallelity condition (16) !

One can calculate the minimal length (20), which, indeed, is the Bures length [9] of
the path (1) of density operators. To do so one has to solve the parallelity
condition. According to Dabrowski and Jadczyk [12], and to [13], this is done by
an ansatz

Ẇ = GW, G∗ = G (21)

which gives easily the equation

%̇ = G% + %G (22)

for the unknown G. G is gauge invariant, and depends only on the pair {%, %̇}.
This reflects the fact that the Bures length of the path (1) can be expressed
without using lifts (2) : Inserting (21) into (20) one gets

LBures(c) =
∫ √

< GW,GW >dt (23)

3



and a straightforward calculation shows

dt2Bures =< GW,GW >= tr %G2 =
1

2
tr G%̇ (24)

There is a formal solution of (22) which reads for faithful density operators

G =
∫ ∞

0
(exp−s%)%̇(exp−s%) ds (25)

and which implies for the metric form (24) the expression

1

2
tr

∫ ∞

0
(exp−s%)%̇(exp−s%) %̇ ds (26)

Now, switching to density operators of finite dimension n, one may choose a base
Ek , where k = 1, . . . , n2 − 1, of traceless hermitian matrices, and write

% =
1

n
1 +

∑
xkEk (27)

to get from (26)

1

2
tr %̇G =

∑
gjkẋ

jẋk with gjk =
1

2
tr

∫ ∞

0
(exp−s%)Ej(exp−s%)Ek ds (28)

Therefore one has for the ”moments conjugate to the coordinates”, xk,

pk = 2
∑

gkjẋ
j = tr GEk (29)

Example 1.
Here I show the simplest possible case, the Bures metric for n = 2. That this case
can be solved is due to the following: Let δ be a derivation, X > 0, Y , 2-by-2
matrices, then

δX = Y X + XY (30)

is solved by

Y trX = δX +
1

2
X−1δ det X − 1

1

2
trX (31)

which is easily derived by δ-differentiating the characteristic equation of X.
Describing now the density operators by

% =
1

2
(1 + x1σ1 + x2σ2 + x3σ3) (32)

which is a variant of (27), the metric space

{% > 0, tr% = 1, dt2Bures} (33)

can be isometrically imbedded into a sphere S3 given by

1 = x2
1 + x2

2 + x2
3 + x2

4 (34)
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where x4 is defined by
x4 ≥ 0, x2

4 = 4 det % (35)

and which is equipped with the metric

1

4
(dx2

1 + dx2
2 + dx2

3 + dx2
4) (36)

This example shows that the Bures metric turns the set of all 2-by-2 density
matrices into a piece of a symmetric space, i.e. into half of a 3-sphere, see also [14],
showing a hidden O(4)-symmetry. Further, let

ω =
1

2
(1 + y1σ1 + y2σ2 + y3σ3) (c)

be another 2-by-2 density operator. Then one calculates

p(%, ω) =
1

2
(x1y1 + x2y2 + x3y3 + x4y4 + 1) (d)

showing that for n = 2 the transition probability characterize the relative position
of % and ω up to an O(4)-rotation.

Example 2.
Here the restriction of the Bures metric to maximal commutative sub-manifolds
will be described. In a suitable base such a sub-manifold can be given by diagonal
density matrices.

% = ( λj δjk ), G = ( gj δjk ) (39)

Now (22) yields

gj =
λ̇j

2λj

(40)

Introducing the new variables
λj = y2

j (41)

the metric of Bures reads
dt2Bures =

∑
ẏ2

j (42)

Hence the restriction on a maximal commutative subset of the Bures metric is
isometrically isomorph to a piece of a sphere, i.e. of a symmetric space.

The set of density operators, equipped with the Bures metric, is metrically
incomplete. One may ask whether there is a completion in which all geodesics
close for dim > 2. To support this question let us consider

Example 3.
The geodesic connecting two faithful density operators, %j, j = 1, 2, within the
space of density operators can be described as follows. Let %j = WjW

∗
j . Then the

geodesic in the W -space connecting W1 with W2 is part of a large circle of the unit
sphere. Its equation is

W = λ1W1 + λ2W2, < W,W >= 1 (43)
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where
a := Real < W1,W2 > (44)

λ1 = cos ϑ− a√
1− a2

sin ϑ (45)

λ2 =
sin ϑ√
1− a2

(46)

The (oriented) length is hence the arc ϑ0 given by

cos ϑ0 = Real < W1, W2 > with − π

2
< ϑ0 <

π

2
(47)

Clearly, the length attains its minimum if we choose lifts such that a is of maximal
value. This can be achieved if (15), and hence (8), is valid for j = 1.
Thus the Bures length ϑ0 of the geodesic joining the two density operators is given
by

cos ϑ0 = tr (%
1/2
1 %2%

1/2
1 )1/2, with 0 < ϑ0 <

π

2
(48)

One easily constructs pairs W1,W2 for which (43) is a parallel lift [4]. Expressing
with them the holonomy (14) and the linear form (13) results in

V (geodesic) = %2#%−1
1 , νgeodesic(X) = trX(%2#%−1

1 )%1 (e)

Comparing (48) with (d) of example 1 yields in the n = 2 case

x1y1 + x2y2 + x3y3 + x4y4 = cos 2θ0 (f)

The metric on the unit sphere of the Hilbert Schmidt W-space can be decomposed
into a horizontal and a vertical part by an ansatz

< Ẇ , Ẇ >= < GW,GW > + < WA, WA >, A∗ = −A (51)

Then A can be defined equally well by [15]

W ∗Ẇ − Ẇ ∗W = AW ∗W + W ∗W A (52)

This can be seen as follows. Going into (22) with an ansatz [15]

Ẇ −WA = GW (53)

and with % = WW ∗ , it follows that A is anti-hermitian. Knowing this and the
hermiticity of G one easily recovers (51). On the other hand, substituting (53) into
the left side of (52), one arrives at the right side of this equation.
A is the restriction on the given lift of a connection 1-form, A, for the gauge
transformations (4), and one has

W ∗dW − dW ∗ W = AW ∗W + W ∗W A (54)
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Introducing the A-covariant derivation of an expression X transforming as W by

DX = dX −XA (55)

another form of (53) is
D W = GW (56)

I now rewrite (54) in a form similar to (30). As a complex linear space defines a
complex analytic structure, the total differential is decomposed naturally into
d = ∂ + ∂̄. Using this one may rewrite (54) as

(∂ − ∂̄) (W ∗W ) = AW ∗W + W ∗W A (57)

This may be contrasted to

d(WW ∗) = (∂ + ∂̄)(WW ∗) = WW ∗G + GWW ∗ (58)

Thus we have
W ∗dW = A1,0 W ∗W + W ∗W A1,0 (59)

dW W ∗ = WW ∗G1,0 + G1,0WW ∗ (60)

Remark: In the case of 2-by-2 density operators (51) can be solved effectively by
(31) using δ = ∂ − ∂̄ , X = W ∗W , and Y = A. The first explicit expression for A
was obtained in [16], see also [17].

For rank(%) = 1 one falls back to the Berry case, and A describes the monopole
structure. For rank(%) = 2 one gets instanton structures [18]. It is unknown what
is with rank(%) > 2 .

∗ ∗ ∗
Note added in proof: In a recent preprint [19] some of the constructions are
generalized and examined for C∗-algebras. It is further indicated how possibly to
proceed if the states (or density operators) have mutually inequivalent supports.
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