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METHODS

For the Monte Carlo (MC) simulation of the LRIM
given by the Hamiltonian
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, (S.1)

we introduce the kinetics via single-spin flips.
A randomly chosen spin is flipped according to
the standard Metropolis update with probability
min [1, exp(−∆𝐸/𝑇 )], with the Boltzmann constant 𝑘𝐵
set to unity. Here, 𝑇 is the temperature and ∆𝐸 is
the change in energy before and after the flip. 𝑁 = 𝐿𝑑

(where 𝐿 is the linear size of a hyper-cubic lattice)
such attempts constitute one MC sweep, setting the
time scale. Obviously, for the LRIM the calculation
of the energy change is the rate limiting step, as it
involves all the spins in the considered lattice. However,
following our recent approach of storing the effective
field for each spin and updating it only when a spin flip
is accepted makes such simulation significantly faster
[1]. Furthermore, to allow for simulations of system
size up to 𝐿 = 4096 in 𝑑 = 2 dimensions, this update
was parallelized using the shared-memory API OpenMP
framework. Since systems with long-range interaction
suffer severely from finite-size effects we additionally use
Ewald summation [2–5] to implement periodic boundary
conditions and thereby to increase the effective system
size. An effective 𝐽𝑖𝑗 ≡ 𝐽(𝑟𝑖𝑗) is calculated once at the
beginning of the simulation.

As an initial configuration at high temperature, we
chose a square lattice with randomly distributed equal
proportion of up and down spins. We chose 𝑇 = 0.1𝑇𝑐
as the quench temperature, where we extract 𝑇𝑐 from
the data presented in Ref. [3]. Using the scaling relation
𝐶(𝑟, 𝑡) ≡ 𝐶 [𝑟/ℓ(𝑡)] for the equal-time two-point corre-
lation function 𝐶(𝑟, 𝑡) = ⟨𝑠𝑖𝑠𝑗⟩ − ⟨𝑠𝑖⟩⟨𝑠𝑗⟩ one can esti-
mate the characteristic length scale ℓ(𝑡) from the decay
of 𝐶(𝑟, 𝑡) as intersection with a constant value where here
we choose 𝐶 [𝑟 = ℓ(𝑡), 𝑡] = 0.5. All considered quantities
such as ℓ(𝑡) and 𝐶(𝑡, 𝑡𝑤) are averages over independent
time evolutions, indicated, e.g., in Eq. (3) of the main
article by ⟨. . .⟩. The presented results are averaged over
50 independent runs for 𝐿 ≤ 2048 and 30 for 𝐿 = 4096
(using different random number seeds).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 1000 2000 3000 4000 5000

(a)

C
(t
,t

w
)

t− tw

tw = 20
tw = 50
tw = 100
tw = 200
tw = 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

(b)

C
(t
,t

w
)

t− tw

tw = 20
tw = 50
tw = 100
tw = 200
tw = 400

FIG. S1. Two-time correlator 𝐶(𝑡, 𝑡𝑤) plotted against 𝑡− 𝑡𝑤,
illustrating the loss of time-translational invariance for (a)
𝜎 = 1.5 and 𝐿 = 2048 and (b) 𝜎 = 0.6 and 𝐿 = 4096.

ILLUSTRATION OF THE LOSS OF
TIME-TRANSLATIONAL INVARIANCE

Figure S1 shows the two-time correlator 𝐶(𝑡, 𝑡𝑤) ver-
sus 𝑡 − 𝑡𝑤, explicitly demonstrating the loss of time-
translational invariance during coarsening. The data for
larger 𝑡𝑤 decay slower, i.e., the older the system is at
the waiting time 𝑡𝑤, the longer in terms of 𝑡 it needs to
decorrelate.
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FIG. S2. As an illustration of finite-size effects, we show
𝐶(𝑦𝑡𝑤, 𝑡𝑤) for fixed 𝑡𝑤 = 20 by varying the system size 𝐿
for (a) 𝜎 = 1.5, (b) 𝜎 = 0.8, and (c) 𝜎 = 0.6.
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FIG. S3. Replot of Fig. 2 from the main article showing
𝐶(𝑦𝑡𝑤, 𝑡𝑤) versus 𝑦 for (a) 𝜎 = 1.5, (b) 𝜎 = 0.8, and (c)
𝜎 = 0.6. The adjustment we have made compared to Fig. 2 is
that we plot the fit to ansatz (5) over a wider 𝑦-range. This
illustrates to which extent a first-order correction can adjust
for the bending of the data for small 𝑦 and the deviation due
to finite-size effect for large 𝑦.
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FIG. S4. Replot of Fig. 3(b) of the main article using nar-
rower 𝜆-values and a smaller 1/𝑦 range emphasizing the large
𝑦 behavior. Shown is 𝐶(𝑦𝑡𝑤, 𝑡𝑤)𝑦

𝜆/𝑧 versus 1/𝑦 for 𝜎 = 0.6
and 𝐿 = 4096.

FINITE-SIZE EFFECTS OF THE
AUTOCORRELATION FUNCTION

In Fig. S2 we show 𝐶(𝑦𝑡𝑤, 𝑡𝑤) versus 𝑦 for (a) 𝜎 = 1.5,
(b) 𝜎 = 0.8, and (c) 𝜎 = 0.6 with fixed 𝑡𝑤 = 20 and
varying 𝐿. For 𝜎 = 1.5 the data show the bulk behavior
over a large 𝑦 range, and only for 𝐿 = 512 the data de-
viate by bending down at 𝑦 ≈ 200. The available data
for 𝐿 = 1024 and 𝐿 = 2048 do not deviate, i.e., there are
no detectable finite-size effects. For 𝜎 = 0.8 and 𝜎 = 0.6,
the data for both 𝐿 = 512 and 𝐿 = 1024 undershoot from
the bulk curve. This happens at larger 𝑦, the larger 𝐿.
For 𝐿 = 2048 this effect is hence less pronounced and for
𝐿 = 4096 it can only be anticipated from these plots. Fi-
nally, because eventually the system reaches a configura-
tion with spontaneous magnetization𝑚eq(𝑇 ), the overlap
and thereby autocorrelation function approaches a con-
stant. Note that the data for smaller systems even cross
the data of the bigger systems. This effectively limits the
extent to which the data can undershoot from the bulk
behavior for smaller 𝑦.

SIMPLE-AGING PLOTS WITH A LONGER
RANGE OF THE FITTED FORM

In Fig. S3 we plot the fits to ansatz (5) shown in Fig. 2
of the main article over a wider 𝑦-range to demonstrate
visually up to which extent the data may be described
by this functional form. Shown is 𝐶(𝑦𝑡𝑤, 𝑡𝑤) versus 𝑦 for
(a) 𝜎 = 1.5, (b) 𝜎 = 0.8, and (c) 𝜎 = 0.6. We see that
towards small 𝑦 the first-order correction can only de-
scribe the data down to a certain point 𝑦min as discussed
in the main article. Asymptotically this correction van-
ishes and the functional form approaches a pure power

law. For large 𝑦 > 𝑦max, the data deviate from the fit
due to finite-size effects (cf. Fig. S2).

SMALLER 1/𝑦 RANGE FOR FIG. 3(b)

In Fig. S4 we replot Fig. 3(b) of the main article using
a smaller 1/𝑦 range and two new 𝜆 values that are closer
to the fitted value of 𝜆 = 0.995(37). These two values
𝜆 = 0.95 and 𝜆 = 1.05 are chosen so that they roughly
correspond to the error margins of the fitted 𝜆. To be able
to more easily compare with the plot in the main article,
we have also again included 𝜆 = 0.9 and 𝜆 = 1.1. One
clearly sees that the curves for 𝜆 = 0.95 show a downward
bending, whereas the data for 𝜆 = 1.05 show signature
of increasing slope. The data for 𝜆 = 0.995 is linear over
a relatively long stretch of 1/𝑦 and well described by the
fitted correction. This visually reconfirms 𝜆 ≈ 0.995 and
establishes the bounds 0.95 ≤ 𝜆 ≤ 1.05.

ALTERNATIVE FORM OF SUB-AGING

Instead of using the analytically derived form of sub-
aging with ℎ(𝑡) as defined in the main article, one may use
the more phenomenological form of 𝑡/𝑡𝜇𝑤 (or ℓ(𝑡)/ℓ(𝑡𝑤)𝜇)
to modify the scaling variable. In Fig. S5 we present
𝐶(𝑡, 𝑡𝑤) vs. 𝑡/𝑡𝜇𝑤 for 𝜎 = 0.6 and 𝐿 = 4096 with 𝜇 =
0.970, 0.976, 0.982, and 0.99. Compared to using ℎ(𝑡) the
data collapse is worse and one effectively only shifts the
crossing point of data for different 𝑡𝑤. This approach
does thus not lead to better collapse.

TWO-TIME AUTOCORRELATORS FROM
LOCAL SCALE-INVARIANCE WITH 𝑧 = 2

According to local scale-invariance [6–9] the generic dy-
namical scaling which arises especially in aging systems
far from equilibrium can be extended to a larger group
of dynamical symmetries. For the phase-ordering kinet-
ics of systems with short-ranged interactions, it is known
that the dynamical exponent 𝑧 = 2 [10, 11]. Then the
Schrödinger group, which arises as dynamical symme-
try of the free diffusion equation, is an example of an
extended dynamical symmetry [6]. Numerous systems
which physically realize Schrödinger invariance have been
found, most notably phase-ordering kinetics in short-
ranged Ising models in 𝑑 = 1, 2, 3 dimensions, see [8, 9]
and references therein. Here we discuss how the require-
ment of Schrödinger invariance restricts the two-time au-
tocorrelator in phase-ordering kinetics.

Physically, it is the two-time or multi-time response
functions which transform co-variantly under local scale-
transformations. Turning to the two-time autocorrelator
𝐶(𝑡, 𝑡𝑤), after a quench to 𝑇 < 𝑇𝑐 from a fully disordered



4

0.4

0.6

0.8

1

2 3 4 5 10

(a) µ = 0.970
C
(t
,t
w
)

t/tµw

tw = 20
tw = 50
tw = 100

tw = 200
tw = 400

0.4

0.6

0.8

1

2 3 4 5 10

(b) µ = 0.976

C
(t
,t
w
)

t/tµw

tw = 20
tw = 50
tw = 100

tw = 200
tw = 400

0.4

0.6

0.8

1

2 3 4 5 10

(c) µ = 0.982

C
(t
,t
w
)

t/tµw

tw = 20
tw = 50
tw = 100

tw = 200
tw = 400

0.4

0.6

0.8

1

2 3 4 5 10

(d) µ = 0.99

C
(t
,t
w
)

t/tµw

tw = 20
tw = 50
tw = 100

tw = 200
tw = 400

FIG. S5. Plots of 𝐶(𝑡, 𝑡𝑤) against 𝑡/𝑡𝜇𝑤 for different values of 𝜇 mentioned in the figure. The data presented is for 𝜎 = 0.6 and
𝐿 = 4096.

initial state, it can be expressed as [7]

𝐶(𝑡, 𝑡𝑤) =
𝑎0
2

∫︁
R𝑑

d�⃗�ℛ(3)(𝑡, 𝑡𝑤, 𝑡micro; �⃗�) (S.2)

where ℛ(3) is a three-point response function which in
the context of Janssen-de Dominicis theory could be ex-
pressed as an average

⟨
𝜓(𝑡, 0⃗)𝜓(𝑡𝑤, 0⃗) ̃︀𝜓(𝑡micro; �⃗�)2

⟩
in-

volving the order parameter 𝜓 and the conjugate re-
sponse operator ̃︀𝜓. The form of that three-point response
in turn is fixed up to a scaling function [6]. Furthermore,
𝑡micro is a microscopic time scale and the amplitude 𝑎0
measures the width of the initial correlator. Since for
phase-ordering kinetics the temperature 𝑇 is an irrele-
vant variable [11], the thermal heat bath merely furnishes
corrections to scaling. In the dynamical scaling regime,
the autocorrelator of phase-ordering kinetics can then be
written as follows [7],

𝐶(𝑦𝑡𝑤, 𝑡𝑤) = 𝑓𝐶(𝑦) = 𝑦𝜆/2(𝑦 − 1)−𝜆Ψ

(︂
𝑦 + 1

𝑦 − 1

)︂
, (S.3)

Ψ(𝑤) =

∫︁
R𝑑

d�⃗� exp

(︂
−ℳ𝑤

2
�⃗�2

)︂
Ψ

(︂ℳ
2
�⃗�2

)︂
(S.4)

where the undetermined scaling function Ψ(𝜚) comes
from the three-point response function mentioned above.
Because of the known asymptotics 𝑓𝐶(𝑦) ∼ 𝑦−𝜆/2 for
𝑦 → ∞, it follows that Ψ(1) exists and is finite. Denot-
ing by 𝑆𝑑 the surface of the hypersphere in 𝑑 dimensions,
Eq. (S.4) is re-written in spherical coordinates as

Ψ(𝑤) =
𝑆𝑑

2

(︂
2

ℳ

)︂𝑑/2 ∫︁ ∞

0

d𝜚 𝑒−𝑤𝜚 𝜚(𝑑−2)/2Ψ (𝜚) (S.5)

and we also made explicit the non-universal metric factor
ℳ. We recognize from this that Ψ is the Laplace trans-
form of the function 𝜚(𝑑−2)/2Ψ(𝜚). Since it is well-known
that a Laplace transform is infinitely often differentiable
wherever it is defined, we can asymptotically expand in
𝑦 [or equivalently around 𝑤 = 1, see (S.3)] and find (the
prime denotes the derivative)

𝑓𝐶(𝑦) = Ψ(1) 𝑦−𝜆/2

[︂
1 +

(︂
𝜆+ 2

Ψ′(1)

Ψ(1)

)︂
1

𝑦
+ . . .

]︂
= 𝑓𝐶,∞ 𝑦−𝜆/2

(︂
1 − 𝐴

𝑦
+ . . .

)︂
(S.6)
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where we identified the constant 𝐴. This is the form (5)
used in the text.

In order to estimate the amplitude 𝐴, we require some
more input on the scaling function Ψ(𝜚) in (S.4). First,
we assume that for 𝜚→ ∞, Ψ(𝜚) grows more slowly than
exponentially which is consistent with Ψ(1) being finite.
Second, we recall that for 𝜚 → 0 consistency with the
asymptotic scaling of 𝑓𝐶(𝑦) requires that Ψ(𝜚) ∼ 𝜚𝜆−𝑑/2

[7]. Because of the known bound 𝜆 ≥ 𝑑/2 [12, 13], Ψ(𝜚)
increases when 𝜚≪ 1. We strengthen this to the require-
ment Ψ′(𝜚) ≥ 0 also when 𝜚 is finite. Next, the integral
representation (S.5) will become useful, via the following
estimate∫︁ ∞

0

d𝜚 𝑒−𝑤𝜚 𝜚𝑑/2Ψ(𝜚) = − 1

𝑤

∫︁ ∞

0

d𝜚
d

d𝜚

(︀
𝑒−𝑤𝜚

)︀
𝜚𝑑/2Ψ(𝜚)

= −
[︂
𝑒−𝑤𝜚

𝑤
𝜚𝑑/2Ψ(𝜚)

⃒⃒⃒⃒∞
0

]︂
⏟  ⏞  

=0

+

∫︁ ∞

0

d𝜚
𝑒−𝑤𝜚

𝑤

d

d𝜚

[︁
𝜚𝑑/2Ψ(𝜚)

]︁

=
1

𝑤

∫︁ ∞

0

d𝜚 𝑒−𝑤𝜚

⎡⎢⎣𝑑
2
𝜚(𝑑−2)/2Ψ(𝜚) + 𝜚𝑑/2 Ψ′(𝜚)⏟  ⏞  

≥0

⎤⎥⎦
≥ 1

𝑤

𝑑

2

∫︁ ∞

0

d𝜚 𝑒−𝑤𝜚𝜚(𝑑−2)/2Ψ(𝜚) (S.7)

where the two assumptions made on Ψ(𝜚) were used ex-
plicitly and also for the estimation of the boundary terms
after partial integration. With (S.5) we have

Ψ′(𝑤)

Ψ(𝑤)
= −

∫︀∞
0

d𝜚 𝑒−𝑤𝜚𝜚𝑑/2Ψ(𝜚)∫︀∞
0

d𝜚 𝑒−𝑤𝜚𝜚𝑑/2−1Ψ(𝜚)
≤ − 1

𝑤

𝑑

2
. (S.8)

Setting 𝑤 = 1, we then have the bound Ψ′(1)/Ψ(1) ≤
−𝑑/2. For the scaling function 𝑓𝐶(𝑦) of (S.6), this gives

𝑓𝐶(𝑦) ≤ Ψ(1)𝑦−𝜆𝐶/2

[︂
1 −

(︂
2
𝑑

2
− 𝜆

)︂
1

𝑦
+ . . .

]︂
. (S.9)

This upper bound on 𝑓𝐶(𝑦) gives a lower bound on the
amplitude in (S.6)

𝐴 ≥ 𝑑− 𝜆. (S.10)

Indeed, it was argued long ago by Fisher and Huse [12]
that 𝜆 ≤ 𝑑. In models which respect this bound, (S.10)
implies that 𝐴 ≥ 0. The validity of this Fisher-Huse
bound was discussed in detail for phase-ordering systems
[14]. However, for phase-separating model-B dynamics,
this Fisher-Huse bound does not hold [13, 15].

Equation (S.6), along with (S.10), is reproduced in
several exactly solvable models of phase-ordering with
nearest-neighbour interactions and 𝑧 = 2, see [8] for de-
tails.

For the 1D Glauber-Ising model at 𝑇 = 0, we have

𝑓𝐶(𝑦) =
2

𝜋
arctan

√︂
2

𝑦 − 1

≃
√

8

𝜋
𝑦−1/2

(︂
1 − 1

6

1

𝑦
+ O(𝑦−2)

)︂
. (S.11)

Since 𝜆 = 1, the bound (S.10) 𝐴 ≥ 0 is consistent with
the exact result 𝐴 = 1/6.

For the spherical model in 𝑑 > 2 dimensions and
quenched to 𝑇 < 𝑇𝑐, we have

𝑓𝐶(𝑦) = 𝑚2
eq

[︁
2𝑦1/2/(𝑦 + 1)

]︁𝑑/2
≃ 𝑚2

eq2𝑑/2𝑦−𝑑/4

(︂
1 − 𝑑

2

1

𝑦
+ O(𝑦−2)

)︂
(S.12)

with the equilibrium magnetization 𝑚2
eq = 1 − 𝑇/𝑇𝑐.

Since 𝜆 = 𝑑/2, the bound (S.10) 𝐴 ≥ 𝑑/2 coincides with
the exact result 𝐴 = 𝑑/2.

Equation (S.6) can also be used as an ansatz for the
spherical model with long-ranged interactions. There is a
phase transition in the long-range universality class at a
non-vanishing 𝑇𝑐 provided 0 < 𝜎 < min(𝑑, 2) and 𝑧 = 𝜎.
The scaling function of the two-time autocorrelator is

𝑓𝐶(𝑦) = 𝑚2
eq

[︁
2𝑦1/2/(𝑦 + 1)

]︁𝑑/𝜎
≃ 𝑚2

eq2𝑑/𝜎𝑦−𝑑/(2𝜎)

(︂
1 − 𝑑

𝜎

1

𝑦
+ O(𝑦−2)

)︂
. (S.13)

Hence, 𝜆 = 𝑑/2 is 𝜎-independent and we note that once
more 𝐴 > 0.
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